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Abstract—Several binary swarm algorithms use the identical
continuous proposal, adding a transfer function to mapping
from continuous to binary space. It has been shown that binary
operators are more appropriate and efficient for binary optimi-
sation. Based on it, we proposed the Boolean Binary Grey Wolf
Optimizer, a new version of Grey Wolf Optimizer to solve binary
optimisation. Our proposal uniquely operates in the binary space
using binary vector and boolean operators, precisely AND, OR,
XOR, and NOT gates. We used OneMax, ZeroMax and 0-1
Knapsack to compare our proposal with bGWO1, bGWO2 and
BPSO. In general, BBGWO outperformed the other swarm-based
algorithms in different scenarios. Furthermore, analysing the
swarm hamming distance and the unique candidate solutions
through optimisation, we found that the proposal can overcome
premature convergence, and most of the time, wolves are in
different positions.

Index Terms—binary optimisation, grey wolf optimizer, swarm
intelligence

I. INTRODUCTION

Many algorithms from the Swarm Intelligence field were
proposed or adapted to perform binary optimisation, since it
can be helpful for various combinatorial problems [1], [2].
However, there is still room to create or improve the algorithms
to be more efficient and less computationally costly [3]–
[5]. One common issue over most binary proposals is the
direct translation of continuous vectors to binary ones [6],
[7]. Even though these versions can converge the swarm
to optimal solutions, the computational cost is higher than
necessary since it commonly uses continuous operators. The
movements in a continuous space do not always translate into
changes in the binary space. Thus, developing new completely
binary-based algorithms inspired by Swarm Intelligence might
help researchers to solve more efficiently problems such as
profit unit commitment [8], feature selection [9], [10], task
scheduling [11] and mining high utility itemset [12].

One of the algorithms that have been shown to present a
good performance in optimisation problems is the Grey wolf
optimizer (GWO) [13]. Considering the promising results of
boolean operators for binary problems, we propose in this
paper a novel Boolean Binary Grey Wolf Optimizer (BBGWO)

that simplifies the bGWO [14] by incorporating boolean logic
gates instead of applying a transfer mechanism. Our proposal
outperforms bGWO versions on three benchmarks: OneMax,
ZeroMax, and 0-1 Knapsack problem.

Despite the similarities with Pazhaniraja et. al [12], our
proposal does not depend on the type of problem. It is
also not affected whether the task regards maximization or
minimization. Moreover, other versions of GWO show that
operators such as the ones inspired in quantum can improve
the performance of bGWO by balancing better exploration-
exploitation [15]. However, it adds complexity in comparison
to boolean gates. Another recurrent issue from binary opti-
misation is the presence of similar individuals in the swarm
that speeds up the suboptimal convergence [1] which we also
consider in our proposal.

The paper is divided into the following sections: Section II
explains the original version of GWO, Section III proposes
the BBGWO algorithm. Section IV details the experimental
setup. In Section V, we discuss the results. Finally, Section
VI presents our conclusions and future works.

II. GREY WOLF OPTIMIZER (GWO)

In 2014, Mirjalili et al. [13] proposed the Grey Wolf Opti-
mizer (GWO), a continuous swarm-based algorithm inspired
by the social hierarchy and group hunting of grey wolves.
In the proposal, each wolf in the pack represents a candidate
solution, and the three fittest wolves (leaders) influence the
rest of the swarm to hunt in the best region found so far.
The leaders are called alpha (α), beta (β), and delta (δ) in
ascending order.

In GWO, the leaders initiate the encircling behaviour mod-
elled in Equations 1 and 2, which attract the swarm near to
them. A and C are the two vectors defined as A = 2a · r1 -
a, and C = 2 · r2, where r is a random vector [13]. Equa-
tion 3 calculates the new wolf position, and the swarm keep
converging as they improve their fitness. GWO pseudocode is
summarized by Algorithm 1.



Algorithm 1: GWO Pseudocode
Initialise the a, A, and C
Initialise the N wolves randomly
Find the α, β, δ solutions based on fitness
while stop criterion is not reached do

for all wolf do
Compute leaders’ influence

Dl=[α,β,δ] = |Cl · xl − x| (1)

x’l=[α,β,δ] = xl − Al · Dl, (2)

Update wolf position

x(i+ 1) =
x’α + x’β + x’δ

3
. (3)

end for
Update a, A and C
Evaluate the current position of individual wolves
Update α, β, δ

end while
Return the best solution

III. OUR PROPOSAL: BOOLEAN BINARY GREY WOLF
OPTIMIZER (BBGWO)

We develop a Boolean Binary Grey Wolf Optimizer
(BBGWO) that uniquely operates in the binary space. There-
fore, our agents are binary vectors, and the interactions among
them are also performed in the binary domain using OR, AND,
XOR and NOT boolean operations.

Our proposal has a hyperparameter called modification rate
(MR), representing a rate of positions modified in each wolf
per iteration. We select D dimensions through this rate and
update the wolf position based on swarm behaviour. If the
swarm fitness changes, the leaders will attract the agents
as GWO [13]. Otherwise, we will flip some dimensions, a
mechanism similar to the mutation on Genetic Algorithm [16].
The movement equation allows the algorithm to explore and
exploit the search space when the fitness is still changing.
Furthermore, we added a mechanism (x̄t

i,d) to create diversity,
considering which GWO tends to converge quickly [17].
Therefore, the movement is calculated using Equation 4:

xt+1
i,d =

{
Lt
α,d ⊗ (Lt

β,d ⊗ Lt
δ,d), if sum(fitt) ̸= sum(fitt−1),

x̄t
i,d, otherwise.

(4)
The symbol ⊗ represents the “XOR” operator, x̄t

i,d is the
position xt

i,d flipped (0 to 1, or 1 to 0, as a NOT operator),
and sum(fitt) is the sum of fitness for the whole swarm
at iteration t. For each leader, we can compute the leaders’
influence (Lt

{α,β,δ}) using Equation 5:

Lt
l,d = M(xt

l,d, x
t
i,d, rd), (5)

where rd = rand{0, 1}, l is α, β or δ, and M(·) is the 3-
input Majority Gate [18] is defined using well-known gates as
follows:

M(a, b, c) = (a⊙ b)⊕ (b⊙ c)⊕ (a⊙ c). (6)

The symbols a, b and c are bits, ⊕ is the “OR” operator, and
⊙ is the “AND” operator.

In Figure 1, we illustrate how the Equation 5 works in
BBGWO on the creation of Lt

α,d. Considering MR = 50%,
we randomly select the indexes: 0, 2, and 5 to perform the
modification. In (a), we see that xα,0 and x9,0 have different
bits, 1 and 0, respectively. There, r takes an important role,
selecting one of them randomly. In (b), the bits from the
selected dimension are equal. Therefore, the random bit (r
= 1) does not influence the gate output. Lastly, in (c), we see
different bits in both candidate solutions, and the random bit
(r = 0) tends the output to the bit from x9. Using the behaviour
seen in (a) and (c), we try to mimic the encircling behaviour,
and (b) shows a mechanism to maintain the candidate solution
in the same leader’s region.

Fig. 1. Using Majority Gate as described in Equation 5. In (a) and (c) we
see the gate output when the dimension has different bits in each solution,
and (b) shows the results when they are equals.

The proposal pseudocode is described in Algorithm 2.
BBGWO starts initializing the wolves (i.e., binary vectors) in
the search space and computing the three fittest wolves in the
swarm (α, β, and δ). Next, until the stop criterion is reached,
the algorithm updates the D selected dimensions of each wolf
using Equation 4.

IV. EXPERIMENTAL SETUP

We analyse the performance of BBGWO on three problems:
OneMax, ZeroMax, and 0-1 Knapsack. OneMax and ZeroMax
are two binary problems in that the goal is to maximise
the number of ones, and zeros, respectively, in the candidate
solution. 0-1 Knapsack is a problem in that the goal is to



Algorithm 2: BBGWO Pseudocode
Initialize randomly N wolves
Find α, β, δ leaders based on the fitness
while stop criterion is not reached do

for all wolf do
Select D dimensions
Update each D dimension using Equation 4

end for
Update wolves’ fitness
Update α, β, δ leaders

end while
Return the best solution

maximise the number of items in a bag (knapsack) considering
its weight limitation [19].

Our proposal was compared with bGWO1, bGWO2, and
BPSO. bGWO1 and bGWO2 were introduced by Emary et.
al [14] to solve binary problems based on the GWO. BPSO
is a binary version of the well-known Particle Swarm Opti-
mization [20]. We used BPSO from PySwarms [21], and we
developed bGWO1, and bGWO2 using Python™ programming
language. We executed all the simulations in an Intel Core i7
computer with 16 GB of RAM running the Ubuntu Linux OS
22.04 64 bits operating system.

We analyse three scenarios using 10, 50, and 100 dimen-
sions for each problem. In our results, we use the pattern
function(dimension) to indicate the simulation scenario. Thus,
OneMax(100) means a simulation scenario using the OneMax
problem with 100 dimensions.

For each scenario, we perform 30 simulations of each
algorithm with 1,000 iterations and 30 agents. As a parametric
analysis, we evaluate the impact of different MR values in
BBGWO. We analyse the following MR values: 5%, 10%,
20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% and 60%. For
the BPSO algorithm, we adopt c1 = c2 = 2, w = 0.9, and
Global topology [20].

V. RESULTS

A. Impact of MR on the BBGWO performance

Previous works demonstrated that the number of dimensions
flipped per iteration affects the performance of swarm-based
algorithms [19]. In this way, we use MR to control how
fast positions can be changed per iteration. Figure 2 shows
the fitness values reached by the BBGWO for the OneMax,
ZeroMax and 0-1 Knapsack problems using 10, 50 and 100
dimensions.

When we consider only ten dimensions for the problems, we
see that the swarm converges similar regardless of the values
of MR. As the 0-1 Knapsack problem is more complex than
OneMax and ZeroMax, we observe that with 50 dimensions,
the performance decreases as we increase the number of
flipped dimensions because it harms the exploitation. In this
way, the slow and careful convergence shows a high rate of

efficiency using a similar number of iterations. For the case
with 100 dimensions, we observed that 1,000 iterations are
insufficient for the swarm convergence using small values of
MR. Moreover, the performance decreases as we increase the
value of MR for the 0-1 Knapsack problem. Thus, we propose
that using 10% for MR is potentially more adequate for dif-
ferent problems. In the future, we would like to transform this
parameter into an adaptive operator, so the swarm identifies
the necessary balance between exploration and exploitation.

B. Individuals’ diversity and convergence

In binary swarm-based algorithms, two limitations can be
often identified: many individuals with similar positions and
premature convergence. We demonstrate that the BBGWO can
overcome both limitations multiple times over iterations due
to Equation 4. We choose the 0-1 Knapsack problem with
100 dimensions (the most complex problem) to discuss the
BBGWO dynamic behaviour.

First, in Figure 3, we show that the majority of the time, the
swarm is not in the same position. We also identify multiple
points in time that the swarm changes from entire diversity to
half of the swarm being in unique positions. When the swarm
converges near the optimal solution, the diversity reaches
lower values than at previous points in time.

Second, we can measure the hamming distance among
wolves as a proxy to estimate how near the wolves are to
each other. Distance equal to zero means that all the swarm is
at the same position, and as the distance increases, the swarm
would be potentially farther from each other.

Figure 4 shows a higher decrease in the hamming distance
on the first 200 iterations as the swarm is initially uniformly
distributed in the search space and slowly converges. On
iteration 220, we observe that the swarm increases the distance
between each other and converges again. The same behaviour
happens at iterations 283, 411, 450, 544, 600 and 891, which
are also associated with a highly diverse set of positions in
the swarm in Figure 3.

Thus, we can argue that BBGWO (i) can explore and exploit
over iterations, (ii) can overcome premature convergence and
(iii) most of the time, wolves are in different positions.

C. Comparing BBGWO to other algorithms

Lastly, we present the performance of BBGWO compared
to the bGWO1, bGWO2 and BPSO algorithms in OneMax,
ZeroMax, and 0-1 Knapsack in different scenarios. The re-
sults found in the simulations show that as we increase the
number of dimensions, the performance across swarm-based
algorithms displays a unique behaviour.

The results from OneMax with 10, 50 and 100 dimen-
sions are shown in Figure 5 (A-C), respectively. Using 10
dimensions, we see that all algorithms have similar results. In
higher dimensions, we see that bGWO1 is slightly better than
BBGWO. Additionally, bGWO2 found the worst result in the
problem.

Using ZeroMax, we found a similar behaviour, but bGWO2
changed place with bGWO1, as shown in Figure 6. Again,



Fig. 2. Box plot of fitness values found by BBGWO varying MR on the 30 simulations of each problem using 10, 50 and 100 dimensions.

Fig. 3. Number of unique positions in the swarm over the iterations for the
0-1 Knapsack problem using 100 dimensions.

Fig. 4. Hamming distance between wolves over the iterations for the 0-1
Knapsack problem using 100 dimensions.

using 100 dimensions, we see BBGWO reaching good results,
but bGWO2 is slightly better than the proposal.

OneMax and ZeroMax are opposite problems. We observe

that for the OneMax, bGWO1 performed better than bGWO2,
and for the ZeroMax problem, the bGWO2 performed better
than bGWO1. We argue that this may be due to a biased
operator to one direction (0 or 1) in each algorithm. In con-
trast, BBGWO showed near-optimal results in both problems.
Figure 7 shows the results from the most challenging problem
used in our simulations. Using 0-1 Knapsack, we see BBGWO
outperforming the other algorithms in 50 and 100 dimensions.

Figures 5, 6 and 7 show how leaders’ information quickly
guides the BBGWO, bGWO1 and bGWO2 to the best region
in the search space. In the initial iterations, we consistently
see them showing better results than BPSO which means that
BPSO has a slower convergence compared to them. For some
scenarios, BPSO can overcome bGWO1 and bGWO2 due to
its slower convergence.

Using a confidence rate of 95%, we apply the Wilcoxon test
to compare the efficiency across algorithms, shown in Tables
I and II. ‘–’ indicates that there is no statistical diference
between the solutions, ‘▲’ indicates BBGWO achieved better
results than the other algorithm and ‘▼’ represents that our
proposal reached worse results than algorithm compared. In
general, BBGWO has a better performance than the other
algorithms for 10 and 50 dimensions for all the problems.
For the case of 100 dimensions, we observe in Table III that
BBGWO also outperformed the other algorithms in general.
However, in the case of OneMax and ZeroMax problems,
bGWO1 and bGWO2 are slightly better than our proposal.



Fig. 5. Mean fitness found by BBGWO, bGWO1, bGWO2, and BPSO on
the 30 simulations of OneMax problem using 10 (A), 50 (B) and 100 (C)
dimensions.

TABLE I
RESULTS OF FITNESS VALUES AND WILCOXON TEST WITH A CONFIDENCE
LEVEL OF 95% COMPARING THE BBGWO WITH THE OTHER ALGORITHMS

USING 10 DIMENSIONS.

10 Dimensions
Problem BBGWO bGWO1 bGWO2 BPSO

OneMax
Fitness 10.00 10.00 9.80 10.00
STD 0.00 0.00 0.40 0.00

Wilcoxon – – ▲ –

ZeroMax
Fitness 10.00 9.70 10.00 10.00
STD 0.00 0.53 0.00 0.00

Wilcoxon - ▲ – –

Knapsack
Fitness 295.00 292.30 287.20 293.33
STD 0.00 8.08 14.45 1.99

Wilcoxon - ▲ ▲ ▲

TABLE II
RESULTS OF FITNESS VALUES AND WILCOXON TEST WITH A CONFIDENCE
LEVEL OF 95% COMPARING THE BBGWO WITH THE OTHER ALGORITHMS

USING 50 DIMENSIONS.

50 Dimensions
Problem BBGWO bGWO1 bGWO2 BPSO

OneMax
Fitness 49.93 50.00 36.77 45.67
STD 0.25 0.00 1.31 0.60

Wilcoxon - – ▲ ▲

ZeroMax
Fitness 49.97 37.43 50.00 45.20
STD 0.18 1.50 0.00 0.60

Wilcoxon - ▲ – ▲

Knapsack
Fitness 3143.57 2937.87 2894.70 2965.47
STD 12.45 75.01 85.67 17.83

Wilcoxon - ▲ ▲ ▲

Fig. 6. Mean fitness found by BBGWO, bGWO1, bGWO2, and BPSO on
the 30 simulations of ZeroMax problem using 10 (A), 50 (B) and 100 (C)
dimensions.

TABLE III
RESULTS OF FITNESS VALUES AND WILCOXON TEST WITH A CONFIDENCE
LEVEL OF 95% COMPARING THE BBGWO WITH THE OTHER ALGORITHMS

USING 100 DIMENSIONS.

100 Dimensions
Problem BBGWO bGWO1 bGWO2 BPSO

OneMax
Fitness 98.83 100.00 63.43 81.30
STD 1.13 0.00 2.09 1.29

Wilcoxon - ▼ ▲ ▲

ZeroMax
Fitness 98.70 65.97 100.00 81.17
STD 0.94 2.36 0.00 1.10

Wilcoxon - ▲ ▼ ▲

Knapsack
Fitness 14983.67 14107.80 10368.27 13266.50
STD 103.85 279.81 334.36 119.67

Wilcoxon - ▲ ▲ ▲

VI. CONCLUSIONS

We proposed the Boolean Binary Grey Wolf Optimizer
(BBGWO) that incorporates only binary operators using logic
gates. BBGWO has high accuracy and a simple implementa-
tion. This proposal has a hyperparameter representing each
wolf’s rate of positions modified per iteration. Through a
parametric analysis, we found that MR = 10% is potentially
more adequate for the tested scenarios.

In two opposite problems, OneMax and ZeroMax, BBGWO
showed promising results, demonstrating that it is not biased in
one direction. BBGWO outperformed bGWO1, bGWO2, and
BPSO on OneMax, ZeroMax, and 0-1 Knapsack problems.
BBGWO displays better performance than the others as we in-



Fig. 7. Mean fitness found by BBGWO, bGWO1, bGWO2, and BPSO on
the 30 simulations of 0-1 Knapsack problem using 10 (A), 50 (B), and 100
(C) dimensions.

crease the complexity of the problem. Thus, BBGWO showed
a balanced convergence that allows the swarm to explore and
exploit quick but carefully.

In addition, we found that the proposal can overcome
premature convergence by evaluating the swarm hamming
distance and the unique candidate solutions. Using our most
complex scenario, most of the time, wolves are in different
positions.

For future works, we aim to compare BBGWO with other
evolutionary and swarm-based algorithms and apply it to other
problems like Feature Selection. We also aim to simplify
the parametrization of BBGWO by using an adaptive swarm
behaviour. Better binary optimization algorithms are vital for
solving real-world problems, as they can help with resource al-
location, hyperparametrisation, dimension reduction or feature
selection in different fields.

REFERENCES

[1] M. Macedo, H. Siqueira, E. Figueiredo, C. Santana, R. C. Lira,
A. Gokhale, and C. Bastos-Filho, “Overview on binary optimization
using swarm-inspired algorithms,” IEEE Access, vol. 9, pp. 149 814–
149 858, 2021.

[2] P. Santos, M. Macedo, E. Figueiredo, C. J. Santana, F. Soares,
H. Siqueira, A. Maciel, A. Gokhale, and C. J. Bastos-Filho, “Application
of pso-based clustering algorithms on educational databases,” in 2017
IEEE Latin American Conference on Computational Intelligence (LA-
CCI). IEEE, 2017, pp. 1–6.

[3] C. Garcı́a-Martinez, F. J. Rodriguez, and M. Lozano, “Analysing the
significance of no free lunch theorems on the set of real-world binary
problems,” in 2011 11th International Conference on Intelligent Systems
Design and Applications, 2011, pp. 344–349.

[4] J. T. Belotti, D. S. Castanho, L. N. Araujo, L. V. da Silva, T. A. Alves,
Y. S. Tadano, S. L. Stevan Jr, F. C. Corrêa, and H. V. Siqueira, “Air
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