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Abstract. A recent study catalogued hundreds of meta-heuristics pro-
posed over the past three decades in Swarm Intelligence (SI) literature.
This scenario makes it difficult for the practitioner to choose the most
suitable meta-heuristic (RL) for a specific problem. This paper shows
that Reinforcement Learning could be a powerful tool for SI. First, we
describe a Reinforcement Learning environment to solve an optimization
problem. Then, we investigate the usage of Proximal Policy Optimization
to dynamically set the Particle Swarm Optimization topology accordingly
to the simulation states. Our RL proposal reached competitive fitness val-
ues, even when evaluated in non-trained scenarios. In addition, we show
the actions’ distribution by simulation in the Rastrigin. The paper demon-
strates how RL could be integrated to improve meta-heuristics capabili-
ties, opening new research paths where RL will be used to improve meta-
heuristics or select them accordingly to their strengths.

Keywords: Particle Swarm Optimization · Proximal Policy
Optimization · Reinforcement Learning

1 Introduction

Swarm Intelligence (SI) is a branch of Computational Intelligence (CI) that
comprises approaches inspired by the intelligent behaviour that arises in the
interaction among living beings to solve complex problems [6]. These agents
behave mostly without supervision, and their actions have a stochastic compo-
nent according to the perception of their surroundings [5,23].

After three decades of the emergence of the research area, the number of
meta-heuristics based on swarms increased from a few to hundreds [3]. Covid-19,
African Buffalo, Buses and the FIFA World Cup are recent inspirations used in
the proposal of new algorithms [3]. Knowing that even the same meta-heuristics
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can achieve weak results if we choose non-optimal hyperparameters. The current
scenario makes complex the task of finding the most suitable meta-heuristic for
each problem [10].

In order to overcome the manual and laborious task of choosing a meta-
heuristic for a specific problem, a new approach based on meta-learning has
emerged in the literature called Learning to Optimize (L2O) [13]. Recently, Yue
et al. [4] created an L2O proposal by extending a point-based optimizer into a
population-based optimizer. Gomes et al. [8] proposed the Learning-to-Optimize
Partially Observable Markov Decision Process (LTO-POMDP), a framework
based on reinforcement meta-learning to solve black-box problems.

On the other hand, we have Reinforcement Learning (RL) becoming an emer-
gent machine learning tool to improve swarm intelligence capabilities. RL is
a family of machine learning methods that can evolve from simple feedback.
Seyyedabbasi [19,20] used a classical reinforcement learning technique, called Q-
Learning, to guide the behaviour of several swarm intelligence algorithms, cre-
ating RLI−GWO, RLEx−GWO, RLWOA and RLSCSO. Wu et al. [24] employed
reinforcement learning to improve PSO convergence, controlling the social and
cognitive components. Almonacid integrated reinforcement learning and opti-
mization problem, creating a method that automatically creates evolutionary
meta-heuristics using reinforcement learning, named AutoMH [1]. Nevertheless,
to the best of our knowledge, there is no approach to dynamically change the
use of swarm communication topology using RL in the literature.

In this paper, we investigate the usage of Deep Reinforcement Learning
(DRL) to dynamically set the Particle Swarm Optimization (PSO) [11] topol-
ogy. We choose PSO because it is a well-known meta-heuristic widely used to
solve several optimization problems [14,21]. In our approach, we first create
a Reinforcement Learning environment where a PSO is integrated to solve an
optimization task. Then, we train the RL agent to select the best-suited PSO
topology. Finally, we evaluate the results in different scenarios.

This paper is divided as follows: Sect. 2 briefly describes Particle Swarm
Optimization. Section 3 describes the methodology and parameterization for the
experiments. Section 4 presents our findings and results. Lastly, Sect. 5 finishes
the paper with some discussions and conclusions.

2 Particle Swarm Optimization

In 1995, Kennedy and Eberhart proposed Particle Swarm Optimization
(PSO) [11], a novel algorithm to solve continuous optimization problems. PSO
is composed of a set of particles (i.e., the agents) that move around the search
space, influenced by the best solution that they individually have found (the cog-
nitive component) and the best solution that any particle in their neighbourhood
has found (social component).

In their movement, the particles update their velocity and position using
Eq. 1 and Eq. 2, respectively [2].

!vi(t+ 1) = χ
{
!vi(t) + c1r1[!pi(t) − !xi(t)] + !c2r2[!ni(t) − !xi(t)]

}
(1)
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!xi(t+ 1) = !vi(t+ 1) + !xi(t), (2)

where !xi(t) and !vi(t) are the position and velocity in the iteration t of the particle
i, respectively; c1 is the cognitive acceleration coefficient, and c2 is the social
acceleration coefficient; r1 and r2 are random uniform numbers; !pi(t), and !ni(t)
are, respectively, the best position found by the particle, and the best position
found by any neighbour until the current iteration. Finally, χ is the constrictor
factor, a mechanism to ensure convergence [21] defined in Eq. 3.

χ =
2∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣ ,ϕ = c1 + c2. (3)

PSO pseudocode is shown in Algorithm 1. While the stop criterion is not
reached, each particle moves around the search space using Eq. 1 and 2. After
each movement, the particle updates its best position, and the best position
found by the neighbours is also updated.

Algorithm 1. PSO Pseudocode
1: Initialize the population randomly
2: while stop criterion is not reached do
3: for each particle do
4: Update particle velocity
5: Update particle position
6: Evaluate particle position
7: Update !pi and !ni

8: end for
9: end while
10: Return the best solution

In the PSO, the communication topology is an essential hyperparameter
because it defines the set of particles that will share information (neighbour-
hood). In a fully connected topology, the agents will quickly share information.
A topology with limited sharing delays information propagation. Thus, commu-
nication topology directly affects the flow of information within the swarm and,
consequently, the algorithm’s performance.

Global (gbest) and Local (lbest) are two well-known topologies in the lit-
erature [21]. For the Global topology, each particle broadcasts information to
the whole swarm. For the Local topology, each particle has a limited number of
neighbours with whom they can communicate [16]. Local and Global topologies
are static, meaning the neighbours do not change over the iterations.

Oliveira et al. proposed a new topology based in a dynamic neighbour-
hood [15]. The topology uses a mechanism that creates new connections between
particles when the swarm stagnates. Every iteration, the particle that does not
improve its !pi(t), increments a counter (pk-failure) by one. When a threshold
(pk-failureT ) is reached, the particle modifies its neighbourhood by connecting
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to a new particle selected by the roulette wheel. pk-failure is set to zero in two
situations: (i) every iteration where the particle improves its solution or (ii) after
a new connection. On average, the dynamic topology showed better results than
Local and Global.

3 Methodology

We developed a reinforcement learning environment using OpenAI Gym that
encapsulates a PSO simulation to solve the optimization problem. The environ-
ment is one of the main components of a Reinforcement Learning task. In a
trial-and-error process, the RL agent interacts with it, selecting an action and
receiving feedback.

The RL agent is integrated into the PSO simulation by setting the PSO com-
munication topology in our experiments. The agent acts in the environment by
choosing Local, Global, or Dynamic topology and evaluating the improvement
in the simulation. An action is taken every step_decision iterations, an environ-
ment hyperparameter. We used step_decision=5, meaning an action after five
PSO iterations. There are 200 time steps where the RL agent interacts with the
environment since in the PSO simulation, we used max_iteration = 1000 as
the stop criterion. In our preliminaries simulations, step_decision=5 performed
better and faster than step_decision=1. Figure 1 depicts our simulation using
the RL environment.

While the stop criterion is not reached, i.e. the episode is not over, the agent
acts in the environment selecting the topology. Next, the agent receives a set of
states representing the current simulation scenario and the reward that measures
the action’s effectiveness after a run of 5 iterations. The reward is calculated using
the function proposed by Schuchardt et al. [17], showed in Eq. 4. It considers that
multiple minor improvements should have the same effect as one considerable
improvement to find the best solution.

reward(t) = αr log10
Fmax(t)

Fmax(t − 1)
(4)

where αr is a scale factor that is set to 1 as indicated by the authors for solving
continuous optimization, and Fmax(t) is the fitness value of the fittest particle
in time step t. The proposed reward function maximizes the maximum fitness
gain between actions. However, as we deal with the problem as a minimization
task, we transform the fitness using Eq. 5 [17].

F (xi) =
1

max(f(xi), 10−20)
(5)

where f(x) is the value of our fitness function for the particle xi. max() is used to
avoid math errors in the division when the fitness is zero. Therefore, the reward
function works in minimization and maximization problems.
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Fig. 1. Reinforcement Learning environment created for solving an optimization prob-
lem through Particle Swarm Optimization. Every time step, the RL agent selects a
topology and evaluates its effectiveness.

We used a set of features retrieved from the simulation to inform the
agent about the state. We based on a set of variables described in previous
works [12,22], e.g. normalized euclidean distance among agents, remaining sim-
ulation budget, and the number of agents improved in the previous iterations.
Additionally, we included a new feature that maps the topology chosen in the
current action.

We choose Proximal Policy Optimization (PPO), a Reinforcement Learning
agent famous for its stability and reliability [18]. We used PPO implementation
from RLLib with default hyperparameters, being γ = 0.99 (discount factor),
timesteps_per_iteration = 20,000, train_batch_size = 4,000, num_sgd_iter
= 30, clip_param = 0.3, KL_init = 0.2, KL_target = 0.01, GAE_parameter
= 1.0, vf_loss_coeff = 1.0, entropy_coeff = 0, learning_rate = 5e-05.
During our preliminaries simulations, we also trained the Rainbow agent [9], but
we removed it from our setup due to the lack of competitive results, supposedly
a tuning problem.

We trained PPO during 500 iterations (epochs) to solve the Rastrigin func-
tion in two scenarios, 10 and 30 dimensions. In each training iteration, we run
600 PSO simulations (episodes). In the PSO simulation we used 20 particles,
c1 = c2 = 2.05, pk-failureT = 1. Local topology allows communication with
two neighbours (i.e., Ring topology). We used standard particle swarm opti-
mization, but our proposal is not PSO version-dependent. We can switch to a
different PSO version by simply changing the PSO code.
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After training, we tested the agent in Rastrigin, Shifted Rastrigin and Shifted
Rotated Rastrigin benchmark functions [7]. For each scenario, we run 50 simu-
lations, collecting the best fitness and sequence of actions the RL agent takes.

4 Results

We present our results organized into two parts. First, we show the performance
of PSO using RL to choose the topology dynamically compared to PSO using
Local, Global or Dynamic topologies. Next, we evaluate the actions chosen by
the approach using RL agent in Rastrigin.

Figure 2 shows the results found in Rastrigin with 10 (A) and 30 (B) dimen-
sions, respectively. The box plots indicate that our RL approach found compet-
itive results in each function, indicating that PPO learned to choose the suited
PSO topology according to the simulation state.

Fig. 2. Box plot of fitness values reached by our proposal (RL), and PSO using Local,
Global and Dynamic topology in Rastrigin with 10 dimensions.

Even training only in Rastrigin, we tested the proposal in two variations
to evaluate the model generalization when used in a non-simulated scenario.
Figures 3, and 4 show the results found in the scenarios using Shifted Rastrigin
and Shifted Rotated Rastrigin with 10 and 30 dimensions. Even though the RL
agent was not trained with rotation and shifting, it could select good sequences
of topologies that took it to reach low fitness values in these scenarios, even
when we increase the complexity (Figs. 3 B and 4 B), we see our RL approach
reaching good fitness results when compared with PSO using Local, Global or
Dynamic topologies.

Figure 5 shows the convergence in the most complex trained scenario (30
dimensions). We see the same behaviour in Rastrigin with 10 dimensions. Our
proposal and Dynamic topology in both scenarios reach the best solution around
the final iteration. Differently, all approaches converge quickly to the final solu-
tion in Shifted Rastrigin and Shifted Rotated Rastrigin (non-trained scenarios).

We applied the Wilcoxon test to compare the efficiency across topologies
using a confidence rate of 95%, as shown in Table 1. In the table, ‘–’ indicates
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Fig. 3. Box plot of fitness values reached by our proposal (RL), and PSO using Local,
Global and Dynamic topology in Shifted Rastrigin with 10 (A) and 30 (B) dimensions.

Fig. 4. Box plot of fitness values reached by our proposal (RL), and PSO using Local,
Global and Dynamic topology in Shifted Rotated Rastrigin with 10 (A) and 30 (B)
dimensions.

Fig. 5. Fitness per iteration for RL, and PSO using Local, Global and Dynamic topol-
ogy in Rastrigin with 30 dimensions.

that there is no statistical difference between the results found by the topolo-
gies, ‘!’ indicates the proposal achieved better results than the other topology,
and ‘"’ represents that our proposal reached worse results than the topology
compared. We can conclude from this analysis that the RL approach performs
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better than Local and Global topologies for every simulated scenario. Our pro-
posal overcomes the Dynamic topology only in Shifted Rotated Rastrigin with
30 dimensions. While in other scenarios, they are equivalent, with no statistical
differences.

Table 1. Results of fitness values and Wilcoxon test with a confidence level of 95%
comparing the RL with the other algorithms using 10 and 30 dimensions in Rastrigin,
Shifted Rastrigin and Shifted Rotated Rastrigin.

10 dimensions
Function RL Local Global Dynamic
Rastrigin Mean Fitness 4.68 7.14 8.82 5.31

STD 2.30 3.01 4.17 2.70
Wilcoxon ! ! –

Shifted Rastrigin Mean Fitness −322.00 −319.32 −313.48 −322.08
STD 4.59 3.81 7.65 3.86
Wilcoxon ! ! –

Shifted Rotated Rastrigin Mean Fitness −314.88 −308.07 −290.47 −311.99
STD 6.93 6.48 16.11 10.00
Wilcoxon ! ! –

30 dimensions
Function RL Local Global Dynamic
Rastrigin Mean Fitness 33.94 54.56 56.01 36.28

STD 8.39 11.94 15.59 8.84
Wilcoxon ! ! –

Shifted Rastrigin Mean Fitness −251.67 −213.52 −200.68 −253.84
STD 18.57 23.77 35.50 23.76
Wilcoxon ! ! –

Shifted Rotated Rastrigin Mean Fitness −169.35 −128.81 −77.30 −153.95
STD 56.12 32.31 72.35 51.61
Wilcoxon ! ! !

In addition, we evaluated the set of actions taken in each simulation and cre-
ated Fig. 6. Figure 6 A shows that Dynamic topology was predominantly chosen
in Rastrigin with ten dimensions. Nevertheless, in Rastrigin with 30 dimensions,
Local and Dynamic topologies were selected almost similarly during the 200-
time steps (Fig. 6 B). As the dimensions increase, the complexity grows, forcing
the agent to behave differently.

Figure 7 shows the actions’ distribution by simulation in Rastrigin. In Fig. 7
A, Dynamic (blue bar) is the most selected topology in each simulation. In turn,
Local (green bar) and Dynamic are selected in a similar quantity in Fig. 7 B.
Global topology (orange bar) is the less frequent choice in both scenarios.
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Fig. 6. Box plot of actions taken by RL agent in Rastrigin with 10 (A) and 30 (B)
dimensions.

Fig. 7. Actions’ distribution by simulation in Rastrigin with 10 (A) and 30 (B) dimen-
sions.

5 Conclusions

We used Proximal Policy Optimization to set the Particle Swarm Optimization
topology dynamically. Firstly, we developed an RL environment with a PSO
simulation where the RL agent selects topology every five iterations. Then, we
trained the agent using the Rastrigin function with 10 and 30 dimensions.

The proposal reached competitive results, overcoming PSO using Local and
Global topology. Both scenarios’ results were statistically equivalent compared
to PSO using Dynamic topology. Even when evaluated in a non-simulated sce-
nario, such as Shifted Rastrigin and Shifted Rotated Rastrigin, the RL app-
roach reached good results, showing generalization capability. We also showed
the choices’ distribution by simulation using the Rastrigin benchmark function.
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The results lead us to believe that the level of the problem’s complexity forces
the agent to act differently.

Despite our limited scenarios, the results found in this paper are essential for
creating the foundation of new research paths where RL will be used to improve
meta-heuristics or select them accordingly to their strengths. We utilized the
standard PSO algorithm in our simulations, but our method could be applied
to any PSO version. We aim to add new problem features in the environment
state for future work to improve the agent’s generalization. In addition, we plan
to investigate in-depth the impact of simulation hyperparameters in different
scenarios.
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