
Applying Reinforcement Learning
for Multiple Functions in Swarm

Intelligence

André A. V. Escorel Ribeiro1 , Rodrigo Cesar Lira1(B) ,
Mariana Macedo2 , Hugo Valadares Siqueira3 , and Carmelo Bastos-Filho1

1 University of Pernambuco, Pernambuco, Brazil
{aaver,rcls,carmelofilho}@ecomp.poli.br
2 University of Toulouse, Occitania, France

mmacedo@biocomplexlab.org
3 Federal University of Technology, Paraná, Brazil

hugosiqueira@utfpr.edu.br

Abstract. Swarm intelligence (SI) algorithms have become popular due
to their self-learning characteristics and adaptability to external changes.
They can find reasonable solutions to complex problems without in-depth
knowledge. Much of the success of these algorithms comes from balancing
the exploration and exploitation tasks. This work evaluates the applica-
tion and performance of a reinforcement learning approach applied to a
well-known swarm intelligence algorithm, Particle Swarm Optimization
(PSO). We use the reinforcement learning agent Proximal Policy Opti-
mization (PPO) to dynamically change the swarm communication topol-
ogy according to the problem. We analyze the PSO’s behavior, influenced
by the reinforcement learning agent, through methods such as interac-
tion networks and fitness analysis. We show that the RL approach can
transfer the knowledge learned from one function to other functions, and
that dynamic changes of topology over time makes PSO much more effi-
cient than setting only one specific topology, even when using a Dynamic
topology. Our results then suggest that changing topologies might be
more efficient than having a Dynamic topology, and that indeed Local
and Global topologies have an important role in the best swarm perfor-
mance. Our results take a step further on explaining the performance of
SI and automatizing their use for non-experts.

Keywords: Proximal Policy Optimization · Particle Swarm
Optimization · Reinforcement Learning · Swarm Intelligence

1 Introduction

Swarm Intelligence (SI) is a branch of Computational Intelligence in which a
collective behavior is exhibited by a group of decentralized and self-organized
simple reactive agents interacting with each other and the environment. The
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. C. Naldi and R. A. C. Bianchi (Eds.): BRACIS 2023, LNAI 14196, pp. 197–212, 2023.
https://doi.org/10.1007/978-3-031-45389-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45389-2_14&domain=pdf
http://orcid.org/0000-0002-2209-4592
http://orcid.org/0000-0001-6089-6214
http://orcid.org/0000-0002-7071-379X
http://orcid.org/0000-0002-1278-4602
http://orcid.org/0000-0002-0924-5341
https://doi.org/10.1007/978-3-031-45389-2_14

198 A. A. V. E. Ribeiro et al.

interaction among them generates a collective adaptation to allow them to solve
complex problems [7]. The simple reactive agents are represented by positions in
the search space with simple historical memories that explore it while exchang-
ing information about their experiences with other agents. Based on the individ-
ual’s experience and the information received by other members of the swarm,
the agents can adapt the behavior in the search space and, with enough time,
find and refine reasonable solutions to the presented problems. Swarm-based
algorithms emerge as an alternative to classical optimization methods in high-
dimensional optimization problems [1]. They are an excellent alternative for
optimization problems since they considerably reduce the computational cost
and do not require a complete understanding of the problem regarding the char-
acteristics of the search space.

Many SI algorithms are based on animal social behavior metaphors, such
as Ant colony optimization (ACO) [2] inspired by the behavior of ant colonies,
Particle swarm optimization (PSO) [6] inspired by a flock of birds, Artificial
Bee Colony (ABC) [5] inspired by the bee hives. Swarm-based meta-heuristics
are applied in several problems, such as nuclear engineering [18] and diagnosing
diseases [14], among others. We also find applications to solve tasks related to
data science and image and signal processing [13,16,19].

Many efforts have been made to improve the performance of swarm-based
algorithms. In the case of PSO, Xu et al. [21], and Wu et al. [20] suggested
the application of reinforcement learning due to this method’s characteristic of
being able to learn which actions are best for a given state. It allows the dynamic
modification of the behavior of the PSO through the adjustment of communica-
tion topology using a reinforcement learning agent, generating better results for
complex problems and increasing the convergence speed. Recently, Lira et al. [8]
proposed a self-adaptive metaheuristic that considers the real-time information
acquired during execution. For the algorithm to adapt, a reinforcement learning
agent collects information and chooses actions that modify the metaheuristic’s
behavior. Despite the good preliminary results presented by reinforcement learn-
ing to create advanced approaches for swarm-based algorithms, it needs to be
clarified if behaviors learned in some scenarios could be adapted in other scenar-
ios not experienced by the algorithms.

This paper evaluates the transfer learning capability of a reinforcement learn-
ing strategy when different topologies can be selected along the optimization with
a PSO algorithm, seeking to understand how the changes influence the various
observed metrics and providing information about the learning of reinforcement
agents and possible patterns that can be found. We find that RL is able to trans-
fer the knowledge from one function to the other functions, and that changing
topologies can be more effective than using a dynamic topology for PSO.

This paper is divided as follows: Sect. 2 briefly describes Particle Swarm Opti-
mization, Proximal Policy Optimization, and Interaction Networks. Section 3
describes the methodology and parameterization for the experiments. Section 4
presents our findings and results, and we finish in Sect. 5 with our conclusions.

Applying RL for Multiple Functions in SI 199

2 Background

2.1 Particle Swarm Optimization

In 1995, Kennedy and Eberhart [6] proposed Particle Swarm Optimization
(PSO) after observing the social behavior of flocks of animals, such as birds.
PSO is one of the metaheuristics of swarm intelligence most known and used
in the literature [9]. Particle Swarm Optimization consists of a group of simple
agents, called particles, that will be scattered in a search space. While a stop-
ping criterion is not reached, the particles update their velocities and positions
at each iteration, keeping the information on the best solutions found by them
(�pi) and the best solutions found by their neighbors (�ni). This information is
used to calculate its next movement within the search space. In each PSO iter-
ation, the velocity (vi) and position (xi) information of each particle is updated
according to Eqs. 1 and 2. Eventually, with enough iterations, the swarm will
likely return a solution approaching the optimum position in the search space.

�vi(t + 1) = χ
{
�vi(t) + c1ε1[�pi(t) − �xi(t)] + c2ε2[�ni(t) − �xi(t)]

}
(1)

�xi(t + 1) = �vi(t + 1) + �xi(t), (2)

c1 and c2 are the acceleration coefficients, ε1 and ε2 are uniform random numbers,
and χ is the constriction factor defined by χ = 2∣

∣
∣2−ϕ−

√
ϕ2−4ϕ

∣
∣
∣

, where ϕ = c1+c2.

The communication topology defines the neighborhood in PSO. It describes
the relations among particles, influencing the way the swarm behaves. Global
(gbest) and Local (lbest) are two well-known topologies for PSO. Global is a fully
connected topology where all particles can communicate with the entire swarm,
allowing the best solution found to be shared quickly in the entire swarm. The
Global topology causes a quick convergence and may not adequately explore the
search space. For the Local topology, each particle is connected to k immediate
particles in the swarm. It creates a ring-like communication structure using k=2.
The particles have information only from the particles next to them so that the
sub-swarms can independently converge on several optimal points. Local topol-
ogy has slower convergence but allows a better exploration of the search space [7].
However, These two topologies are more suitable for specific problems, which led
Oliveira et al. [4] to develop a more balanced topology that operates adaptively.
In this approach, stagnant particles look for better particles to communicate.
This approach adds a new attribute to the particle, called pk-failure, which is
incremented every iteration that the particle does not improve its fitness. If the
pk-failure value exceeds a threshold (pk-failureT), the particle looks for a new
neighbor to communicate. The choice of the neighbor for the particle to commu-
nicate with is probabilistic, based on roulette wheel selection, so that particles
with better fitness have more chances of being chosen.

200 A. A. V. E. Ribeiro et al.

2.2 Reinforcement Learning

Reinforcement learning (RL) refers to learning which action should be taken in
a situation (i.e., state) to achieve one or more goals [14]. At each iteration, a
reinforcement learning agent receives observations of the current state scenario
and takes an action from a list of actions allowed in that problem. After the
action, the agent receives a reward, which measures whether the action was
beneficial. Through trial and error, the agent maps and learns the actions that
obtained the best rewards for the observed states, seeking to choose the ones
that maximize the accumulative reward.

In reinforcement learning, the agent’s strategy to map the relationship
between the observed states and the actions that must be taken is called policy.
The agent aims to find the best strategy (i.e., policy) within the environment
that maximizes the reward function. Therefore, the agent can learn which policy
works better for a given environment. Reinforcement learning has been used with
optimization meta-heuristics, including PSO [14], seeking to improve the algo-
rithm’s convergence speed. For applications in continuous and complex problems
where mapping the set of states and actions is difficult, it is possible to use a
deep reinforcement learning approach. The name deep reinforcement comes from
deep learning because of the use of deep neural networks to map the set of states
and actions.

Proximal Policy Optimization (PPO) Schulman et al. [17] proposed the
Proximal Policy Optimization (PPO), a policy gradient method more stable, effi-
cient, and more straightforward than other predecessors, as Trust Region Policy
Optimization (TRPO). PPO works to improve a policy, performing slight modifi-
cations. Its main improvements are using clipped surrogate objective, value func-
tion clipping, reward and layer scaling, orthogonal, and Adam learning rate [3].
PPO performed well in multiple benchmark problems for Reinforcement Learn-
ing [17].

2.3 Interaction Network

Oliveira et al. [11] proposed the Interaction Network (IN) aiming to understand
the swarm dynamics better. IN is a framework that assesses the flow of informa-
tion generated from the agents’ interactions. The Interaction Network captures
the exchange of information between agents, seeking to understand how the
swarm influence each other. Oliveira et al. [12] have demonstrated that using
interaction networks helps to compare, for instance, the balance between explo-
ration and exploitation tasks across algorithms. IN is represented using a graph
where each node represents an agent, and the edges represent the interactions
between agents. The edges can be modelled in many ways, here, we modelled
as shown in Eq. 3. In this network, we do not consider how much one parti-
cle influenced each other, but who influenced whom over time that signs the
communication topology structure [10].

Applying RL for Multiple Functions in SI 201

Iti,j =
{

1 if j ε �ni

0 otherwise (3)

IN can be evaluated individually or by the accumulation of successive net-
works. Iterations can be accumulated using a Time Window (TW) to capture
the social interactions among agents in a frequency of iterations. The TW allows
an analysis of which agents were neighbors to each other within an interaction
interval so that large time windows make the interaction networks show the inter-
actions that are most repeated. Short TWs contain the most recent interactions,
while TWs = 1 contain instant interactions.

3 Methodology

We used the reinforcement learning framework for swarm intelligence, created by
Lira et al. [8] based on Python programming language and RLLLib1. We chose
the PSO in our experiments since it is a widely known and deployed swarm
intelligence metaheuristics in the literature [9].

The simulation runs in time steps, allowing different swarm configurations.
At the beginning of each time step, the RL agent acts, selecting Local, Global, or
Dynamic topology. After a preset number of iterations, the RL agents evaluate
the reward and the new simulation state before starting the same cycle until
the stop criterion is reached. We used this preset number of iterations equal
to 10 in this paper. At the end of the training stage, the agent should be able
to recommend the best topologies for functions with similar characteristics. We
used PPO [17] as the reinforcement learning agent to solve this problem. The
RL agent is responsible for learning the topologies that best adapt to the tested
functions and modifying the topology in the PSO based on the characteristics
learned during execution.

We used simple and widely used functions to evaluate the algorithms in uni-
modal and multimodal scenarios for simplicity and first validation. Yet, it is
challenging to appropriately cover all needed scenarios to evaluate a method-
ology [15], we argue that these scenarios are well-explored in the literature in
regard to performance [9]. Thus, we selected Schwefel 2.21, Sphere, and Schwe-
fel 2.22 unimodal functions, and Rastrigin, Griewank, and Schwefel multimodal
functions. The search space chosen for these functions is based on Plevris and
Solozano [15] (Table 1). Then, two instances of RL agents were trained for each
type of function per scenario. We trained with Rastrigin for multimodal func-
tions, and we used Schwefel 2.22 for unimodal functions. We expect that the RL
learns the characteristics needed from each type of function by training only in
one example.

A given metaheuristic may perform well on a function with few dimensions
and poorly on a function with multiple dimensions. This problem is called the

1 https://docs.ray.io/en/latest/rllib/index.html.

https://docs.ray.io/en/latest/rllib/index.html

202 A. A. V. E. Ribeiro et al.

Table 1. Description of the benchmark functions used in the simulations.

Function Search Space Equation

Unimodal Sphere [−100, 100]
∑D

i=1 |x2
i |

Schwefel 2.21 [−100, 100] max(|xi|), i ∈ {0...D-1}
Schwefel 2.22 [−100, 100]

∑D
i=1 |xi| +

∏D
i=0 |xi|

Multimodal Rastrigin [−5.12, 5.12]
∑ D

i=1(xi
2 − 10cos(2πxi) + 10 · D

Griewank [−100, 100] 1
4000

∑D
i=1 x2 − ∏D

i=0 cos(xi√
i
) + 1

Schwefel [−500, 500] 418.9829 · D − ∑D
i=1 xisin(

√|xi|)

“Curse of Dimensionality” – a well-known problem in data science that refers to
the phenomena that arise when analyzing and organizing information in spaces of
many dimensions that do not occur when few dimensions are implemented [15].
Due to this problem, two different scenarios were empirically chosen for the
number of dimensions and particles, Scenario 1 with 20 particles and 50 dimen-
sions and Scenario 2 with 10 particles and 25 dimensions. In both scenarios, we
used 1000 iterations as the stop criterion for the PSO simulations. These values
were chosen to guarantee convergence for multidimensional problems [15], and
we point out that the number of particles is smaller than usually used in the
literature in order to make the problem more complex with a smaller dimen-
sionality. Additionally, in PSO, we used the parameters c1 = c2 = 2.05, and
pk-failureT = 1.

For the evaluation, we selected three metrics: (i) fitness, which is an indication
of algorithm success; (ii) the distribution of the selected topology among Local,
Global, and Dynamic, i.e., which actions the Reinforcement Learning agent rec-
ommended the most; (iii) interaction networks (IN) [10], which will be used to
observe the accumulated interactions of the agents during a defined time inter-
val, allowing us to analyse the importance of the selected topologies over time.
We execute the PSO without reinforcement, seeking to observe how the topolo-
gies perform in each chosen function. This topology performance information is
used to compare the results obtained with the reinforcement, so the topologies
with the best performance in the tested functions might be the majority of the
agent’s recommendations.

4 Results

We divided our results into three subsections. First, we show the fitness perfor-
mance of the RL proposal compared with PSO using Global, Local, and Dynamic
topologies. Next, we focus on our proposal, evaluating the topologies chosen in
each scenario. Finally, we analyze the Interactions Networks in the RL approach.

Applying RL for Multiple Functions in SI 203

4.1 Evaluating the Fitness

In Figs. 1 and 2, we present the boxplots of the best fitness values found in 50
simulations in each scenario. We see that RL applied to PSO reached, in general,
better performance than using the PSO with a specific topology for six functions.

For Scenario 1 (Fig. 1), using unimodal functions, we see that the RL per-
formed as well as the best communication topology found for each function.
RL could have been more efficient for the multimodal functions. In Schwefel
function, it reached the worst results. In Scenario 2 (Fig. 2), we see our approach
reaching competitive results. However, the results showed again that the training
in Rastrigin led RL to achieve bad results in Schwefel.

Fig. 1. Boxplot of the best fitness found on 50 simulations of each algorithm in
Scenario 1.

We then compared the results using a signal-ranked Wilcoxon test with a
confidence rate of 99.9% in Tables 2 and 3. ‘–’ indicates no statistical difference
between the solutions, ‘�’ indicates the RL approach achieved better results
than the other algorithm, and ‘�’ represents that our proposal reached worse
results than the algorithm compared. Based on the Wilcoxon test results, we
can assure the RL capability for solving different functions, even when we train
only one of them with similar characteristics. Only in Schwefel function it did
not work well.

204 A. A. V. E. Ribeiro et al.

Fig. 2. Boxplot of the best fitness found on 50 simulations of each algorithm in
Scenario 2.

Table 2. Results of fitness values and Wilcoxon test with a confidence level of 99.9%
comparing the RL with the other algorithms for Scenario 1.

Scenario 1

Function RL Local Global Dynamic

Sphere Mean Fitness 2.61 15.38 1163.9 2.92

STD 4.72 9.87 1446.39 6.87

Wilcoxon � � –

Schwefel 2.21 Mean Fitness 16.25 19.25 16.17 18.46

STD 1.67 1.39 1.83 1.65

Wilcoxon � – �
Schwefel 2.22 Mean Fitness 269.48 312.32 693.32 41.37

STD 471.29 239.16 225.67 106.0

Wilcoxon – � –

Rastrigin Mean Fitness 71.90 121.60 115.97 80.0

STD 16.93 23.80 23.97 14.30

Wilcoxon � � –

Griewank Mean Fitness 0.000349 0.000764 0.040017 0.002407

STD 0.000714 0.000855 0.279387 0.003118

Wilcoxon – – �
Schwefel Mean Fitness 8902.70 19.25 16.17 18.46

STD 1031.57 1.39 1.83 1.65

Wilcoxon � � �

Applying RL for Multiple Functions in SI 205

Table 3. Results of fitness values and Wilcoxon test with a confidence level of 99.9%
comparing the RL with the other algorithms for Scenario 2.

Scenario 2

Function RL Local Global Dynamic

Sphere Mean Fitness 9.1e-07 3.5e-03 104.7 2.66e-04

STD 3.0e-06 4.760e-03 1031.26 9.6e-05

Wilcoxon � � �
Schwefel 2.21 Mean Fitness 6.28 8.46 12.3 7.05

STD 1.51 1.71 10.73 1.53

Wilcoxon � – –

Schwefel 2.22 Mean Fitness 10.9 58.55 242.55 0.15

STD 68.82 126.82 114.5 0.44

Wilcoxon – � –

Rastrigin Mean Fitness 43.35 44.48 55.58 36.47

STD 10.88 12.13 14.57 10.39

Wilcoxon – � –

Griewank Mean Fitness 2.45e-4 0.001318 0.051423 0.001681

STD 0.000637 2.226e-3 0.2 0.001983

Wilcoxon � – �
Schwefel Mean Fitness 4731.377060 8.5 12.3 7.05

STD 733.83 1.71 10.73 1.53

Wilcoxon � � �

4.2 Evaluation of the Selected Topologies

We now analyse the distribution of the selected topologies by RL over time
steps. We expect that even by training on one example of a benchmark function
(Schwefel 2.22 or Rastrigin), the RL agent will be able to learn a good policy
for solving similar functions.

We plot the percentage of time that a topology was chosen over time step
coupled with the best fitness evolution over iteration in Figs. 3 and 4. We can
observe that in the first phase, “exploration phase”, the Global topology was
chosen most of the time, but the “exploitation phase” varies across experiments.
The Dynamic topology was most chosen for the “exploitation phase” indicat-
ing that the swarm needs more diversity from the connections to improve the
fitness. In the “exploration phase”, being widely connected is more important
than having a diverse set of connections. Therefore, regardless of being unimodal
and multimodal functions, it might be true that diversity on the connections is
better as the swarm starts to exploit.

The fitness improvement is larger while using the Global topology, but we
argue that this is not due to the fact that this topology is more efficient for
the swarm. Actually, this might be true because of the easiness of improving

206 A. A. V. E. Ribeiro et al.

Fig. 3. Percentage of times that a topology was selected by the agent, with its respective
fitness evolution on the bottom of each plot for Scenario 1.

Applying RL for Multiple Functions in SI 207

Fig. 4. Percentage of times that a topology was selected by the agent, with its respective
fitness evolution on the bottom of each plot for Scenario 2.

208 A. A. V. E. Ribeiro et al.

in a “exploration phase”. We see that for the Schwefel function the swarm did
not converge, the chosen topology is the Local, corroborating with the literature
that this topology works better than the Global topology for complex multimodal
functions.

4.3 Analysing the Interaction Network

We are also interested in understanding how the agents influence each other
in their movement over iterations. We use the cumulative Interaction Network
(IN) to analyze the social interactions of the best simulation for each experiment
in four-time windows: (i) between 0 and 99 iterations, (ii) between 100 and
199 iterations, (iii) between 200 and 299 iterations, and (iv) between 300 and
999 iterations, shown in Figs. 5 and 6. Each line represents the intensity of the
influence of one particle on the displacement of the other particles. Therefore,
strong lines (yellow-red) indicate particles that strongly influence the swarm, and
strong columns represent particles that are strongly influenced by the swarm. We
can identify which topology impacted the most across time windows by analyzing
the networks. In Sect. 4.2, we see which topologies were more frequently chosen
across simulations; here, we can observe which topologies impacted the most on
the movement for the best experiments. If we observe strong diagonal lines and

Fig. 5. Interaction Network generated from the simulation with the best fitness for
each function of Scenario 1.

Applying RL for Multiple Functions in SI 209

Fig. 6. Interaction Network generated from the simulation with the best fitness for
each function of Scenario 2.

random points, the Local, Global, and Dynamic topology substantially affected
the displacement, respectively.

We observe that for the best simulations, in Scenario 1 (Figs. 3 and 5), for
unimodal functions, the Global topology was more chosen combined with the
Dynamic at the end of the simulation which can be observed on the networks.
Nevertheless, the Local topology strongly affects the movement from the mid-
dle to the end of the simulation (by looking at the diagonals from Sphere and
Schwefel 2.22). For the multimodal functions, the Local topology also appears
as an essential element for the best simulations, even though it was not the most
chosen one for Rastrigin and Griewank functions.

In Scenario 2 (Figs. 4 and 6), we observe some similarities to Scenario 1, but
the Dynamic topology is more present on the networks. The importance of the
Dynamic topology is in line with its performance, depicted in Table 2. In contrast
to the fact that the Global topology was frequently chosen for the multimodal
functions, the effect of this topology could have been more substantial than the
other topologies.

210 A. A. V. E. Ribeiro et al.

5 Conclusions

In this paper, we applied RL to the PSO, allowing the swarm to change its com-
munication topology over time. We compared the efficiency of RL when trained
on two functions and tested it on two other new functions with similar char-
acteristics. We chose two well-established functions in the literature (Rastrigin
and Schwefel 2.22) and tested them on two other multimodal and unimodal
functions, respectively.

Using our simulated scenario, we demonstrated that applying Reinforcement
Learning in Swarm Intelligence could be efficient across functions. We observed
that RL could learn how to adapt to the environment even when not trained
in the same function, indicating the capability of transferring learning among
functions. Nevertheless, a more comprehensive set of experiments is still essential
for drawing stronger conclusions.

Our work was a step further in understanding how to automatize the use of
Swarm Intelligence for unknown problems and how to understand the perfor-
mance and patterns from SI. Swarm Intelligence still requires expertise in the
domain, so it is not as straightforward as it can become.

In our future work, we aim to understand more clearly the reason for the
topologies selected, seeking to understand why some functions, such as Schwefel,
obtained worse results in Reinforcement Learning. It is also necessary to evaluate
if the training in a single unimodal or multimodal function is enough for the agent
to learn the characteristics presented by the functions. The RL agent may more
accurately identify the characteristics of the observed functions using multiple
functions with the same characteristics in the training phase.

Acknowledgements. The authors thank the Federal Institute of Pernambuco
(IFPE), Brazilian National Council for Scientific and Technological Development
(CNPq), processes number 40558/2018-5, 315298/2020-0, and Araucaria Foundation,
process number 51497, for their financial support. Mariana Macedo was supported
by the Artificial and Natural Intelligence Toulouse Institute (ANITI) - Institut 3iA:
ANR-19-PI3A-0004.

References

1. Bansal, J.C., Singh, P.K., Pal, N.R. (eds.): Evolutionary and Swarm Intelligence
Algorithms, Studies in Computational Intelligence, vol. 779. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-91341-4

2. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41
(1996). https://doi.org/10.1109/3477.484436

3. Engstrom, L., et al.: Implementation matters in deep policy gradients: a case study
on PPO and TRPO (2020)

4. Junior, M.A.C.O., Bastos Filho, C.J.A., Menezes, R.: Using network science to
define a dynamic communication topology for particle swarm optimizers. In:
Menezes, R., Evsukoff, A., González, M. (eds.) Complex Networks. Studies in Com-
putational Intelligence, vol. 424, pp. 39–47. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-30287-9 5

https://doi.org/10.1007/978-3-319-91341-4
https://doi.org/10.1109/3477.484436
https://doi.org/10.1007/978-3-642-30287-9_5
https://doi.org/10.1007/978-3-642-30287-9_5

Applying RL for Multiple Functions in SI 211

5. Karaboga, D., et al.: An idea based on honey bee swarm for numerical optimization.
Technical report, Technical report-tr06, Erciyes University, Engineering faculty
(2005)

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Network, vol. 4, pp. 1942–1948 (1995).
https://doi.org/10.1109/ICNN.1995.488968

7. Kennedy, J.: Swarm Intelligence, pp. 187–219. Springer, US, Boston, MA (2006)
8. Lira, R.C., Macedo, M., Siqueira, H.V., Bastos-Filho, C.: Integrating reinforce-

ment learning and optimization task: Evaluating an agent to dynamically select
PSO communication topology. In: Tan, Y., Shi, Y., Luo, W. (eds.) Advances in
Swarm Intelligence. ICSI 2023. LNCS, vol. 13969, pp. 38–48. Springer, Cham
(2023).https://doi.org/10.1007/978-3-031-36625-3 4

9. Macedo, M., et al.: Overview on binary optimization using swarm-inspired algo-
rithms. IEEE Access 9, 149814–149858 (2021). https://doi.org/10.1109/ACCESS.
2021.3124710

10. Oliveira, M., Bastos-Filho, C.J.A., Menezes, R.: Towards a network-based app-
roach to analyze particle swarm optimizers. In: 2014 IEEE Symposium on Swarm
Intelligence, pp. 1–8 (2014). https://doi.org/10.1109/SIS.2014.7011791

11. Oliveira, M., Bastos-Filho, C.J.A., Menezes, R.: Using network science to assess
particle swarm optimizers. Soc. Netw. Anal. Min. 5(1), 3 (2015). https://doi.org/
10.1007/s13278-015-0245-5

12. Oliveira, M., Pinheiro, D., Andrade, B., Bastos-Filho, C., Menezes, R.: Communi-
cation diversity in particle swarm optimizers. In: Dorigo, M., et al. (eds.) ANTS
2016. LNCS, vol. 9882, pp. 77–88. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44427-7 7

13. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int.
J. Bio-Inspired Comput. 3(1), 1–16 (2011). https://doi.org/10.1504/IJBIC.2011.
038700

14. Pervaiz, S., Ul-Qayyum, Z., Bangyal, W.H., Gao, L., Ahmad, J.: A systematic
literature review on particle swarm optimization techniques for medical diseases
detection. Comput. Math. Methods Med. 2021, 1–10 (2021). https://doi.org/10.
1155/2021/5990999

15. Plevris, V., Solorzano, G.: A collection of 30 multidimensional functions for
global optimization benchmarking. Data 7(4), 46 (2022). https://doi.org/10.3390/
data7040046

16. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview.
Swarm Intell. 1, 33–57 (2007)

17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017). https://doi.org/10.48550/ARXIV.1707.06347

18. da Silveira Câmara Augusto, J.P., dos Santos Nicolau, A., Schirru, R.: PSO with
dynamic topology and random keys method applied to nuclear reactor reload.
Progr. Nucl. Energy. 83, 191–196 (2015). https://doi.org/10.1016/j.pnucene.2015.
03.009

19. Wauters, T., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: Boosting
metaheuristic search using reinforcement learning. In: Talbi, EG. (eds.) Hybrid
Metaheuristics. Studies in Computational Intelligence, vol 434, pp. 432–452.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30671-6 17

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-3-031-36625-3_4
https://doi.org/10.1109/ACCESS.2021.3124710
https://doi.org/10.1109/ACCESS.2021.3124710
https://doi.org/10.1109/SIS.2014.7011791
https://doi.org/10.1007/s13278-015-0245-5
https://doi.org/10.1007/s13278-015-0245-5
https://doi.org/10.1007/978-3-319-44427-7_7
https://doi.org/10.1007/978-3-319-44427-7_7
https://doi.org/10.1504/IJBIC.2011.038700
https://doi.org/10.1504/IJBIC.2011.038700
https://doi.org/10.1155/2021/5990999
https://doi.org/10.1155/2021/5990999
https://doi.org/10.3390/data7040046
https://doi.org/10.3390/data7040046
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.1016/j.pnucene.2015.03.009
https://doi.org/10.1016/j.pnucene.2015.03.009
https://doi.org/10.1007/978-3-642-30671-6_17

212 A. A. V. E. Ribeiro et al.

20. Wu, D., Wang, G.G.: Employing reinforcement learning to enhance particle swarm
optimization methods. Eng. Optim. 54(2), 329–348 (2022). https://doi.org/10.
1080/0305215X.2020.1867120

21. Xu, Y., Pi, D.: A reinforcement learning-based communication topology in particle
swarm optimization. Neural Comput. Appl. 32(14), 10007–10032 (2020). https://
doi.org/10.1007/s00521-019-04527-9

https://doi.org/10.1080/0305215X.2020.1867120
https://doi.org/10.1080/0305215X.2020.1867120
https://doi.org/10.1007/s00521-019-04527-9
https://doi.org/10.1007/s00521-019-04527-9

	Applying Reinforcement Learning for Multiple Functions in Swarm Intelligence
	1 Introduction
	2 Background
	2.1 Particle Swarm Optimization
	2.2 Reinforcement Learning
	2.3 Interaction Network

	3 Methodology
	4 Results
	4.1 Evaluating the Fitness
	4.2 Evaluation of the Selected Topologies
	4.3 Analysing the Interaction Network

	5 Conclusions
	References

