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ABSTRACT Advances in electronic systems, wireless communication protocols, and intelligent devices
allowed the development of networks of mobile devices such as cars, drones, and robots. The field of mobile
ad hoc networks (MANETs) comprises networks where the mobility of the devices is one of the fundamental
elements that characterise these networks. However, the node’s mobility leads to constant changes in the
network’s topology, representing a challenge to routing protocols designed for MANETs. Although there
is effort from researchers to tackle the intricacies of routing protocols in MANETs, there is still room for
improvement as new applications with challenging specifications continue to arise. This research enriches the
existing theoretical perspective by presenting an innovative method for optimising the routing performance
of the ad hoc on-demand distance vector (AODV) protocol. Grounded on multi-objective metaheuristics,
we aim to improve AODV’s routing recovery performance concerning routing delay, energy consumption,
packet loss ratio, and route loadmetrics. To gauge the quality of our contribution, we compare its performance
to the standard AODV, a mono-objective optimised AODV, and four other well-known routing protocols with
different routing approaches. The results indicate that the proposed solution was superior to the original
AODV with average improvements of 56.0%, 59.3%, 48.1% and 0.7% on route load, routing delay, packet
loss ratio and energy consumption, respectively. It also presented competitive results compared to other
routing protocols.

INDEX TERMS AODV; mobile ad hoc networks; multi-objective optimisation; route recovery.

I. INTRODUCTION

MOBILE ad hoc networks (MANETs) are self-
configuring wireless networks – that do not require

a fixed or previously configured infrastructure – that allow
devices (or nodes) to form connections in a dynamic manner.
These networks have decentralised control and are composed
of independent mobile nodes communicating in a multi-hop
scheme [1]. Among many types of MANETs [2]–[5], we can
cite the flying ad hoc networks (FANETs) [6], [7]. FANETs
has attracted attention due to increased applications related

to swarms of unnamed air vehicles (UAVs). Regardless of the
type, all MANETs face challenges related to mobility, quality
of service (QoS), energy, and routing [4], [5].
The mobility of MANET’s nodes represents an extra chal-

lenge to [8] concerning the routing protocols. As the network
topology changes continuously due to the mobility of the
nodes, these routing protocols need mechanisms to minimise
the impact caused by the mobility of the nodes on the routing
process [9]. Furthermore, depending on the application, the
nodes’ movement does not consider the possible communica-
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tion issues (e.g., breaking an active route), which adds more
complexity to the routing process.

In an attempt to overcome the problems of proactive pro-
tocols, the reactive or on-demand protocols only maintain
information from active routes. The route discovery works
on demand [10]. When a node has to send data to a specific
destination, it broadcasts request packets if it does not have
an active route to that node [11].

Since no protocol has the best performance in all scenarios,
the routing protocol selection depends on the characteristics
of the application. Furthermore, as the node’s energy in the
network comes from limited energy sources such as commer-
cial batteries, there is also an energy limitation [12], [13].
Since wireless communication is the primary consumer of
MANETs (i.e., energy used to send and receive data/route
packets) [14], an efficient routing protocol can reduce energy
consumption in the network.

Among the routing protocols designed forMANETs, the ad
hoc on-demand distance vector (AODV) is a reactive protocol
commonly used in MANETs [15]–[17].

The ad hoc on-demand distance vector (AODV) is a sim-
ple flooding routing protocol. Due to these characteristics,
it significantly produces excessive redundant traffic (i.e.,
broadcast storms), which overloads network resources such as
bandwidth and battery, especially in high-density network en-
vironments, impacting network functionality and increasing
packet loss, end-to-end delay, latency, and low throughput.
[5].

Besides the advantages and drawbacks of reactive proto-
cols, the AODV has positive and negative aspects. For exam-
ple, Pereira et al. [18] analysed the AODV local and source
repair mechanisms separately and observed that the source
repair exhibits better performance in most scenarios when
compared to the local repair. Moreover, a study published in
2012 showed that AODV’s approach to selecting the route
repair mechanism could be improved by adding the concept
of node connectivity (i.e., the number of neighbours from a
node) [19].

Although the on-demand behaviour indirectly helps AODV
save energy by executing routing discovery and route repair
operations only when needed, this protocol is not natively
energy-aware nor has mechanisms designed to prevent exces-
sive energy consumption. In fact, in 2009, a modified energy-
aware version of AODV proposed to select routes that require
less energy to deliver packets [20].

Another drawback commonly associated with the AODV
is that this protocol needs to adapt its behaviour to meet
the application’s specifications [19]. Thus, AODV cannot be
tuned to reduce energy consumption or maximise the packet
delivery ratio. However, it is worth mentioning that this prob-
lem is not exclusive to AODV and is present in several other
routing protocols for MANETs.

As adopted in previous works [19], [21], the introduction
of node connectivity in the route repair process, coupled with
a few more parameters, enhanced the performance of the
AODV. These works employed a mono-objective algorithm

to optimise the routing performance of the AODV regarding
a single metric. This approach allows adapting the version of
AODV by selecting different QoS metrics. However, as these
works used mono-objective algorithms, they only optimise
the protocols regarding a single metric (i.e., they cannot
simultaneously minimise the routing delay and energy con-
sumption).
This study contributes to enhancing the prevailing theo-

retical framework by introducing a novel technique to im-
prove the routing efficiency of the AODV protocol. The
primary goal is boosting AODV’s routing recovery perfor-
mance by tuning four parameters (i.e., SW1, SW2, LW1,
and LW2) responsible for controlling which route recovery
approach (e.g., local or source recovery) will be employed
in a particular route breakage scenario. Our research further
contributes to the existing body of knowledge by explor-
ing diverse approaches for integrating the notion of node
connectivity into the Ad Hoc On-Demand Distance Vector
(AOVD) protocol. In contrast to earlier methods that extracted
connectivity information from the simulation platform and
treated it separately from the routing process, we investigate
incorporating connectivity directly into the routing process.
This investigation is of great significance as it unveils that
various strategies for integrating connectivity into AODV can
potentially deteriorate its performance.
To assess the routing performance of the proposed tech-

niques against the original AODV and four other routing
protocols, we utilise multiple QoS metrics [22], [23] such
as normalised route delay (Delay), packet loss ratio (PLR),
normalised route load (NRL), and energy consumption (EC).
In this context, another contribution of our study revolves
around evaluating Quality of Service (QoS) metrics that are
apt for multi-objective optimisation. Our findings demon-
strate a discernible correlation among specific metrics, im-
plying that optimising one metric could indirectly lead to the
optimisation of others. Among the chosen metrics, it’s worth
noting that only energy consumption did not exhibit a strong
correlation with the rest.
Tackling the multi-objective optimisation of the four pa-

rameters, we select the non-dominated sorting genetic al-
gorithm (NSGA-II), speed-constrained multi-objective par-
ticle swarm optimisation (SMPSO), and the strength Pareto
evolutionary algorithm (SPEA2). We compare the proposed
solution against alternative routing protocols and prior mono-
objective methodologies. This comparative analysis enables
us to discern variations in performance among these tech-
niques, particularly in the context of multi-objective versus
mono-objective strategies. Lastly, the optimal weight set de-
rived from the optimisation process corroborates findings
from earlier studies, underscoring that, across most scenarios,
the source repair mechanism of AODV outperforms local
repair mechanisms.
The remainder of this paper is organised as follows: Section

II presents a brief classification on themain routing protocols;
Section III presents a list of related work, Section IV explains
the fundamental theoretical aspects behind this work, and
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Section VI describes the experimental setup and discusses the
computational results. Next, Section VII discusses the main
advantages and limitations of the proposed approach. Lastly,
the conclusions are presented in Section VIII.

II. ROUTING PROTOCOLS CLASSIFICATION
We can divide routing protocols for mobile ad hoc networks
into three classes based on their modes of operation: proac-
tive, reactive, and hybrid protocols [24]. Proactive protocols
periodically monitor the network to detect changes (e.g., new
routes and route breaks) and use tables to store routing infor-
mation for all or a group of nodes in the network. This strat-
egy’s main advantage is reducing the time needed to create
or repair routes. Furthermore, since the nodes have updated
routing information, they can promptly reconstruct/create
routing paths. However, the number of tables and the amount
of stored data can increase the memory consumption in the
nodes. Besides, periodic network monitoring may flood it
with routing packets, reduce the bandwidth available for the
traffic of data packets, and increase packet loss risk.

In an attempt to overcome the problems of proactive pro-
tocols, the reactive or on-demand protocols only maintain
information from active routes. The route discovery works
on demand [10]. When a node has to send data to a specific
destination, it broadcasts request packets if it does not have
an active route to that node [11].

If a node receives the route request and has a busy way
to the requested destination, it sends a reply packet with the
solicited path to the source node. Otherwise, it forwards the
route request packet to its neighbours. This process continues
until a route is found, the destination is reached, or a prede-
fined timeout is exceeded.

At MANETs reactive protocols, the nodes are flexible,
which leads to frequent route failures and route rediscov-
ery necessity, falling into a trade-off where broadcasting in-
creases the reachability of the route request messages to the
destinations in sparse networks. Still, on the other hand, re-
broadcasting causes excessive redundant packets across high-
density networks that significantly decrease network perfor-
mance [5].

Compared to proactive protocols, reactive protocols store
routing information with less memory. However, the time
required to create routes is high due to the need to discover the
desired way - instead of just searching in the routing tables.

Lastly, hybrid protocols combine the main characteristics
of reactive and proactive protocols. They often operate by
dividing the network into groups or zones. The routing occurs
proactively inside each group while they behave reactively
outside the groups [25].

This strategy aims to cluster together nodes that are close
to each other or communicate more often. Because the
frequency of communication between nodes from different
groups is low, a reactive routing approach can be used without
significantly impacting the protocol’s overall performance.
One of the hybrid protocols’ most significant challenges is
dividing the nodes into groups [5].

As mentioned, for the routing protocols designed for
MANETs, thead hoc on-demand distance vector (AODV) is
a reactive protocol commonly used in MANETs and focus of
investigation.

III. IMPROVEMENTS ON THE AODV’S ROUTING
RECOVERY MECHANISM
This section presents a set of related works which aims to im-
prove the route recovery mechanism of the AODV regarding
a collection of quality of service (QoS) metrics. Some results
tackled this issue by proposing new route recovery, while oth-
ers focused on improving the original strategy. For example,
the AODV-BR [26] and AODV-ABR [27] variants improve
the AODV recovery strategy by supplying multiple backup
routes to replace broken paths. However, this approach may
need to be more efficient in a dense environment [28].
To overcome the drawback of the AODV-BR and AODV-

ABR, Jeon et al. proposed the implicit backup routing-AODV
(IBR-AODV) [28]. Their method employs local recovery
of routes for reliability and reduces the number of control
messages for efficiency. It implicitly conducts a route recov-
ery process considering the mobility of a backup node. The
results indicate the superiority of the IBR-AODV to the others
regarding the number of link failures, data delivery ratio,
message overhead, and end-to-end delay.
Similarly to the IBR-AODV, the bidirectional route repair

method (BRRM-AODV) also claims to improve the route
recovery speed [29]. This approach is bidirectional since
when an old route disconnects, the source and destination
start the route discovery simultaneously to shorten the discon-
nection duration. Moreover, this version features a density-
based method for minimising the hop count in the repaired
route and improving the successful probability of repairing
the path. The simulation results indicate that the proposed
method can reduce the route construction time by more than
20% and reduce the failure probability of route reconstruction
by almost 50% compared with the AODV routing protocol.
This method can also eliminate from 10% to 20% of the nodes
participating in relaying protocol messages during the route
discovery procedure.
Another extension of the AODV protocol was proposed by

Castellanos et al. and claimed to provide a better mechanism
to detect the link failures in a route and reestablish the con-
nections considering the conditions of QoS that have been
established during the route discovery phase [30]. Adaptive
QoS-Aware AODV (AQA-AODV) claims improvements in
packet delay, number of link failures, and connection setup
latency compared with protocols like AODV.
Another approach for optimising the performance of rout-

ing protocols for MANETs is using bio-inspired optimises .
Pereira et al. [19] introduced node connectivity to the AODV
and employed the particle swarm optimisation (PSO) algo-
rithm to select parameters. The ideawas to use the PSO to find
the best AODV route repair mechanism values. The results
achieved by their proposal were superior to the standard
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AODV in most of the scenarios considered. More details on
this approach are presented in Section IV-A.

In 2017, Santana et al. [21] extended the work of Pereira et
al. [19] by comparing the performance of the PSO to another
swarm-based optimiser: the artificial bee colony algorithm
(ABC). They concluded that the optimisation of the AODV
with the PSO and ABC achieved superior results than the
standard AODV. However, there were no statistical differ-
ences between the results achieved by the PSO and ABC.

Unlike Santana et al., Maleki et al. uses optimizers to select
whether a local or a source repair will be conducted when
a route is broken [31]. In this version, GA-AODV, a genetic
algorithm (GA), is the optimiser employed to find the best
decision strategy based on the routing overhead, average end-
to-end delay, and packet delivery ratio metrics. A similar
approach was presented in 2020 by KN et al. [32]. In their
process, particle swarm optimisation was applied to optimise
the route recovery strategy of the AODV in a wireless sensor
network to improve the packet delivery ratio and decrease
routing overhead.

Despite all the advances in this field, there is still room
for improvement. Furthermore, based on the no-free-lunch
theorem for optimisation , we know that no solution based
on optimizers can have the best performance in all scenarios.
Hence, new and improved approaches can be proposed to
meet the demands of specific applications.

IV. THEORETICAL BACKGROUND
A. AODV ROUTING PROTOCOL
The ad hoc on-demand distance vector (AODV) is a well-
known reactive routing protocol with multi-hop and dynamic
communication between mobile nodes [33], [34]. As a re-
active protocol, the AODV works on demand to establish,
recover and update routes. Moreover, to reduce the traffic of
unnecessary routing packets in the network, the AODV only
maintains active ways that avoid repair routes that are not in
use or may never be used [35].

When a node needs to send information and does not have
an active route to a destination node, it starts a route discovery
process. The route discovery process begins with the initial
node (source) broadcasting a route request packet (RREQ)
to all nodes under its communication range (i.e., neighbours
). If any neighbour that received the RREQ packet has a
valid route, it replies to the RREQ with the desired path [18].
Otherwise, the route request packet is broadcasted by the
neighbours that do not have the way expected. This process
continues until a route is found or a time limit is exceeded.

Besides creating a new route, route repair is another essen-
tial procedure to maintain the information flow between the
nodes in the network. The AODV uses two mechanisms to
repair broken paths called source and local repairs. Consider
the network configuration depicted in Figure IV-A, in which
the UAVs represent the nodes, and the grey and green lines
indicate an active route that connects the source to the target
node. Also, consider that the node’s movement described as
a "breakpoint’’ will break the way.

FIGURE 1. An example of MANET is where the UAVs represent nodes, and
an active route connecting a source to a target node comprises the nodes
connected by the grey and green lines. Note that the node described as
"breakpoint" indicates a node that will cause the route to break.

When the breakage is detected by the predecessor node
(Figure 2), it decides if it will attempt a local repair or inform
the source node that the route is no longer valid and a source
repair should be performed.

FIGURE 2. Same network of Figure IV-A but with the breakpoint node
and its connections removed. Also, the predecessor node to the
breakpoint is highlighted.

The predecessor node decides if it will try the local
repair based on the number of hops between the source
and the predecessor node (packetForward) and the number
of hops between the predecessor node and the destination
node (predecessorHopCount). A local repair is made if the
predecessor-target path is shorter than the source-predecessor
path (i.e., packetForward > predecessorHopCount). Other-
wise, a route error packet (RERR) is sent to the source node
to start the source repair. In the example of Figure 2, we have
packetForward = 3 and predecessorHopCount = 2, which
means that a local repair would be attempted, and a possible
outcome is presented in Figure 3.

FIGURE 3. Example of a possible outcome to the repair process on the
scenario described by Figure 2. Note that the new part of the repaired
route is highlighted in green.

When a local repair is selected, the predecessor node uses
the route discovery process to find a new route to the target.
During this process, data packets are buffered in the predeces-
sor node, and if no valid path is found, all the buffered data
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is dropped, and it propagates a route error packet (RERR) to
inform the source node that the route is no longer valid. Note
that a failure in the local repair process generates a significant
data loss and increases the routing delay since the time to
create a new route will equal the time to perform the local
and source repair. Moreover, this also can impact the energy
consumption of the nodes. Researchers have proposed mod-
ifications to the decision process to avoid the performance
issues caused by selecting the route repair mechanism. One of
the approaches used to minimise these issues was presented
by Pereira et al. [19]. The idea behind thismethod is explained
in the next section.

1) Improving the AODV Route Repair Scheme
A study from 2009 showed that the different route repair
options on the AODV could produce different results de-
pending on the scenario analysed [18]. In other words, the
selection between local and source repair can impact the
overall performance of the AODV. In this sense, Pereira et
al. [19] proposed an approach to improve the AODV by
modifying the route repair decision process. This approach
has the assumption that more connected nodes are more likely
to find feasible new routes than less connected nodes. Besides
packetForward and predecessorHopCount , the connectivity
can be defined as the number of neighbours or nodes under
the communication range (Figure 4), and the connectivity of
the source and target nodes are also considered to choose the
route repair mechanism.

FIGURE 4. Illustration of a route breakage scenario where we can see
that the set of neighbours of a node is composed of all the nodes under
its communication range (dashed green circles). In this example, the
connectivity of the source node is three, while the connectivity of the
predecessor is six.

Furthermore, they proposed using weights to adjust the
importance of terms considered to select the route repair.
These weights were introduced to represent the impact of
the connectivity, packetForward , and predecessorHopCount
vary according to the characteristics of the networks (e.g.,
number and velocity of nodes) and the environment’s features
(e.g., size and presence of obstacles).

Algorithm 1 summarises the modified route repair decision
process. The source node weights (SW1 and SW2) controls,
respectively, the importance of the number of hops between
the source and the predecessor node and the connectivity
of the source (sourceConnectivity). In the same way, LW1

and LW2 are the weights of the number of hops between
the predecessor and the destination node and the predecessor
node’s connectivity (predecessorConnectivity).
Pereira et al. [19] used the PSO to find their previouswork’s

best local and source weight values. However, this approach
is limited to optimising the AODV concerning a single metric.
Since the routing problem in MANETs is naturally multi-
objective (i.e., reducing energy consumption while keeping
the routing delay low), we propose to use multi-objective
algorithms to optimise the routing performance of the AODV
considering multiple QoS metrics.

Algorithm 1Modified route repair decision scheme
1: source = (SW1 · sourceHopCount) + (SW2 · sourceCon-
nectivity);

2: local = (LW1 · predecessorHopCount) + (LW2 · prede-
cessorConnectivity);

3: if (source ≤ local); then
4: Local Repair;
5: end if
6: if (source > local); then
7: Source Repair;
8: end if

B. MULTI-OBJECTIVE OPTIMISATION AND PARETO
DOMINANCE
In mono-objective optimisation problems, the goal, in gen-
eral, is to find the maximal or minimal value of a predeter-
mined cost function [36], [37]. In contrast, multi-objective
optimisation (MOO) aims to optimise a set of conflicting
objective functions simultaneously [38], [39]. It means that
a candidate solution has to satisfy the posed constraints and
give a reasonable value to all objective functions simultane-
ously according to a predefined rule (in our case, the domi-
nance concept). The optimisation methods usually determine
a group of solutions named Pareto optimal , and inside this set,
we store non-dominated solutions. A non-dominated solution
can be viewed as a solution that can only strictly improve
one of its objectives without worsening at least one of the
remaining ones [40], [41]. A multi-objective problem can be
defined as follows [40], [42]:
Min F(x) = [f1(x), f2(x), ..., fm(x)],
subject to (x) = (x1, x2, ...xn) ∈ Ω ⊂ ℜn,

where x ∈ ℜn is the vector containing the n decisions
variables, Ω is the set of the feasible decision vectors which
a group of constraints determines, F is the vector containing
all the mono-objective functions fm(x) and m = 2|3 is the
number of objective functions which have to be optimised at
the same time.

Mathematically, a solution x = (x1, x2, ..., xn) ∈ ℜn

are non-dominated if there is no solution vector z =
(z1, z2, ..., zn) ∈ ℜn such that f (z) ≤ f (x) and at least one
f (z) < f (x). Similarly, we say that x dominates z (x ≺ z)
if and only if two conditions are satisfied (in minimisation
problems):
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i) ∀i ∈ (1, 2, ..., n), xi ≤ zi;
ii) ∃i ∈ (1, 2, ..., n), xi < zi.
Solutions are incomparable if distinct solutions cannot

dominate each other. In this case, all non-dominated solutions
belong to the Pareto optimal set, nominated in the space of
objectives as Pareto front [39]. Figure 5 depicts an example
of a Pareto front set for a given problem where the goal is to
minimise two conflicting objectives.

FIGURE 5. Example of Pareto Front for the minimisation a problem with
two conflicting objective functions. The blue circles and the triangles are,
respectively, the non-dominated and dominated solutions. The set
composed of all circles if the the Pareto front.

As illustrated in Figure 5, The circles represent the non-
dominated elements, the triangles are the dominated ones, and
the set composed of all the circles is the Pareto front for that
specific problem. In this example, the C is dominated by A
and B (A and B dominates C). However, since a2 is better
than b2 but a1 is not better than b1, we say that A and B are
incomparable.

Themulti-objective optimisation algorithmswere designed
to find answers in the Pareto front. They employ the Pareto
dominance as a criterion for fitness assignment in multi-
objective problems [43].

C. SELECTED OPTIMISATION ALGORITHMS
This section describes the multi-objective optimisation algo-
rithms (MOA) addressed in this work: NSGA-II, SPEA2, and
SMPSO. Generally, a good MOA must find a set of non-
dominated solutions regarding all solutions and approximate
as best as possible to the genuine Pareto front (PF). It has two
goals: i) the non-dominated solutions obtained should be as
close as possible to the true PF, and ii) the solutions should
be as diverse as possible. The NSGA-II, SPEA2, and SMPSO
use different strategies to accomplish these goals [44].

1) NSGA-II
Multi-objective evolutionary algorithms (MOEA) are a
prominent class of optimisation methods to deal with mono
andmulti-objective problems using evolutionarymechanisms
[45]. Undoubtedly the NSGA-II (Non-dominated Sorting Ge-
netic Algorithm) [46] and the SPEA2 (Strength Pareto Evo-

lutionary Algorithm) [47] are the most well-known and used
MOEAs in recent literature [40], [48].
The NSGA-II presents two important operations: assigning

a non-domination rank and calculating the crowding distance
[46]. In the first case, a non-dominated sorting process must
be performed, in which non-dominated fronts (groups) Fk ,
k = 1, ..., nk are created. For k = 1, the solutions are all
non-dominated among each other. In F2 are the chromosomes
dominated just by the individuals in F1, and so on. In Fnk are
the fully dominated solutions. Therefore, each individual xi
in Fk is assigned a non-domination rank value irank = k [43].
The next step is to calculate the crowding distance of the

population, front by front. This action intends to estimate
the density of solutions in the same front Fk . The lower the
domination rank, the better the resolution. In this case, the
algorithm drives to the actual Pareto front. It is essential to
favour solutions with smaller crowding distances to ensure a
good spread of solutions that may cover the entire PF [40],
[46]. Diversity in population is mandatory [39], [42], [46].

Based on these premises, the NSGA-II is initiated ran-
domly, generating a population (X0) of N individuals (chro-
mosomes) xi. Then, they are assigned the non-domination
rank, and the crowding distance is calculated [39].

First, we choose the individuals (parents) of the current
population (Xt ) using the binary tournament with the re-
position method. The selections are made based on higher
fitness or higher crowding distance. Then, we repeat the
process until all the N individuals are chosen.
The next step is to perform the crossover operation, and in

this step, we use the crossover probability parameter (pc). We
sort r ∈ [0, 1] for each pair of parents previously selected.
If r > pc, two new individuals are created. If r < pc the
crossover does not occur, and the parents are retained in the
offspring (X′

t ). Then, we apply the mutation procedure with
probability pm to all individuals of the offspring.
The algorithm then combines the parents (Xt ) and the

offspring (X′
t ), generating a population of 2N individuals

that is sorted after the calculation of the non-dominated fronts
and the crowding distances. Lastly, we select for the next gen-
eration the best half of individuals. We present the Algorithm
2 to summarise the process.

2) SMPSO
Since the introduction of the Particle Swarm Optimization
Algorithm (PSO) by Kennedy and Eberhart in 1995 [49],
it became the most famous swarm-based optimisation algo-
rithm to deal with mono-objective problems [50]–[53].

In this sense, several proposals for PSO-based algorithms
to deal withmulti-objective tasks are also in the literature. Un-
doubtedly, the most known recommendations are the multi-
objective PSO (MOPSO), introduced by Moore and Chap-
man [54], and the speed-constrained multi-objective parti-
cle swarm optimization (SMPSO), from Nebro et al. [55].
In addition, many other proposals adding improvements to
the methods mentioned earlier are available, as discussed in
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Algorithm 2 NSGA-II Pseudocode
1: Initialise the parameters;
2: Generate the initial population randomly using a uniform

distribution;
3: Evaluate the fitness of the whole population;
4: Calculate Fk and the crowding distance of each agent;
5: while a termination criterion is not met do
6: Select the parent chromosomes from the population

using a binary tournament;
7: Apply the crossover to parents, forming the new pop-

ulation;
8: Execute the mutation to each new chromosome;
9: Evaluate the new individuals;
10: Combine the current population with new individuals;
11: Calculate all Fk groups and the crowding distance;
12: Select the best 50% of the population to generate the

new population;
13: end while
14: return Best Pareto found;

Reyes et al. [56]. In this work, we chose the standard version
of the SMPSO because it is a state-of-art proposal yet.

In PSO-based algorithms, the potential solutions are called
particles, and a population (set of particles) is named Swarm.
Two basic equations need to be updated at each iteration.
The first is the position xtp of each particle p = 1, 2...,P at
iteration t , calculated according to Equation 1.

xt+1
p = xtp + vt+1

p , (1)

where vt+1
p is the particle’s velocity updated according to

Equation 2

vt+1
p = χ[ωvtpd + c1r1 ⊗ (pbesttpd − xtpd)+

c2r2 ⊗ (gbesttd − xtpd)]
(2)

where ω is the inertia weight, r1 and r2 are random vector
generated uniformly in the interval [0,1] for each variable
d (dimension), c1 and c2 are the cognitive and social rates,
respectively; pbesttpd is the best position found along the
iterations by particle p (the best individual experience or the
situation that led to the best performance index) and gbesttpd
is the best position found by a predefined neighbour (the best
collective experience). A main modification in the SMPSO
is using a constriction coefficient χ to limit the speed of
the particles, proposed by Clerk and Kennedy [57]. Classical
approaches, as the MOPSO adopts upper and lower limits to
the actual velocity. The χ coefficient is calculated as follows:

χ =
2

2− φ−
√
φ2 − 4φ

, (3)

where

φ =

{
c1 + c2 if c1 + c2 > 4

1 if c1 + c2 ≤ 4.
(4)

The new velocity update calculation is done using Equation
5

vt+1
p = χ[ωvtpd + c1r1 ⊗ (pbesttpd − xtpd)+

c2r2 ⊗ (gbesttd − xtpd)].
(5)

Besides, the accumulated velocity of each variable d for
each particle is constricted according Equation 4:

vtpd =


δd ifvtpd > δd

−δd ifvtpd ≤ −δd

vtpd otherwise,

(6)

where δd =
(vmaxd −vmind )

2 , vmaxd and vmind are the upper and lower
limits of the velocity in terms of the variable d.
In summary, the velocities of the swarm are calculated

by Equation2 and then multiplied by the constriction factor
of Equation 3. Finally, the result is constrained using the
expression defined in Equation 6.
Another essential step in the SMPSO algorithm applies

the turbulence operator based on a mutation [45]. We adopt
the polynomial mutation operator described by Deb and Deb
[41], applying it in 15% of the variables, considering all the
swarm (p × d variables). The new particle formed xt,mutpd ,
which substitutes the old one, is modified in the dimension
d according to Equation 7.

xt,mutpd =

{
xtpd + ζ(xtpd − xLd ) if r ≤ 0.5

xtpd + ζ(xUpd − xUd ) if r > 0.5,
(7)

where p and d are, respectively the numbers of individuals
in the swarm and the number of variables, r is a number
randomly generated according to the uniform distribution
within the interval [0,1], xLd and xUd are the lower and upper
bounds of variable d , respectively, and ζ is calculated as
follow:

ζ =

{
(2r)

1
(1+ηm) − 1 if r ≤ 0.5

1− (2(1− r))
1

(1+ηm) ifr > 0.5
(8)

where ηm ∈ [20,100] is a user-defined index parameter.
The last step of the SMPSO is to define an external archive,

or leaders archive, with size S < P composed of the non-
dominated solutions. If the library becomes full or, in other
words, if there are more than S non-dominated solutions, the
crowding distance is used to select the particles that remain.
Algorithm 3 summarises the description of the SMPSO.

3) SPEA2
The second version of the strength pareto evolutionary algo-
rithm (SPEA2) is a multi-objective evolutionary algorithm,
such as the NSGA-II. Zitzler et al. [47] introduced SPEA2.
The method has gained much attention in the last decade and
is considered efficient in many applications [40], [58].
The SPEA2 presents three critical features which differ it

from the NSGA-II [41], [47]:
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Algorithm 3 SMPSO Pseudocode
1: Initialise all particle’s positions randomly using a uni-

form distribution;
2: Initialise the particle’s velocity and set their best-known

position as their initial position;
3: Evaluate the fitness of the swarm;
4: Initialise the leaders’ archive with the non-dominated

vectors;
5: Set as the position of the particle which has the best

fitness;
6: while a termination criterion is not met do
7: for each particle i = 1, ...,N do
8: Calculate the particle’s velocity and then update its

position;
9: Apply the mutation/turbulence operator;
10: Update particle’s fitness;
11: if f (xi) < pbesti then
12: Update the particle’s best-known position;
13: end if
14: if f (xp) < gbest then
15: Update the swarm’s best-known position;
16: end if
17: Update the leaders’ archive;
18: end for
19: end while
20: return The leaders archive;

i) it utilises a fitness assignment mechanism for each indi-
vidual;

ii) simultaneous maintenance of two populations, the first
composed of individuals who perform the search process
and an external archive to store the non-dominated solutions
found during the search process;

iii) the density of the neighbourhood of each drives the
search.

Besides, the strength of Pareto is essential once it presents
how close the solutions are to the first rank, as defined in
NSGA-II.

The goal of the SPEA2 is to obtain orderly distributed
Pareto solutions by managing the external archive. Also, it
presents a few configuration parameters and relatively fast
convergence.

The steps to implement the SPEA2 are described as fol-
lows. Again, consider Xt the population at iteration t . Here,
define At as the external archive containing up to Na chro-
mosomes.

The initialisation randomly generates the initial population
X0 and an empty archive A0. Then, we calculate the fitness
of each individual.

Before discussing the steps in the algorithm’s main loop,
it is necessary to define some variables to allow the fitness
assignment. The first is the strength Pareto Si of each chro-
mosome i, calculated according to Equation 9.

Si =
∑
i≻j

Sj (9)

where Ndi is the number of solutions dominated by xi, j =
1, ...,Ndi is the index of the individual that xi dominates
consideringXt∪At . The strength is the number of individuals
that xi dominates in the current iteration t .
Following, the raw fitness Ri of the individual i is

Ri =
∑
i≺l

Sl (10)

in which Ndomi is the number of solutions that dominates
xi, l = 1, ...,Ndomi is the index of the individuals which
dominates xi in Xt ∪ At . The raw fitness is the sum of the
strength of the individuals which dominates xi in the current
iteration t . The higher the Ri, the worse is xi.

Then, the chromosome’s density is estimated using the K-
nearest neighbour method, using Equation 11.

Di =
1

σki + 1
(11)

where σki is the distance to the k-th nearest neighbour in the
objective space. The insertion of this variable tends to lead
the algorithm to explore sparsely populated regions.
Finally, the fitness of xi is calculated by Equation 12.

Fi = Ri + Di (12)

Therefore, the objective function of the SPEA2 is to min-
imise fitness. Observing that Ri intends to approximate the PF
and Di brings diversity in the objective space.
The external archive At is updated by inserting non-

dominated solutions. This process must consider that the
number of keys is constant and equals Na. If the current
number of individuals in iteration t is less thanNa, the archive
is completed using the best-dominated solutions regarding
fitness. Otherwise, the exceed chromosomes are eliminated,
considering those with a shorter distance to their k nearest
neighbours .
The selection, crossover, and mutation operations are the

same as NSGA-II, described in Section IV-C1. The compiled
process of the SPEA2 is in Algorithm 4.

V. PROPOSED SOLUTION
Based on the methodology proposed by Pereira et al. [19], we
summarise our solution’s architecture in the diagram depicted
in Figure 6. The first step of the proposed solution consists of
using a multi-objective algorithm to generate possible values
for the parameters that represent the weights of the source
repair (i.e., SW1 and SW2) and local repair (i.e., LW1 and
LW2). Next, to access the quality of the values generated,
we employed the NS2 platform to simulate the AODV pro-
tocol within the connectivity framework, incorporating the
weight values derived from the multi-objective algorithm.
Following this , a script was employed to parse the output
files from each simulation, extracting the pertinent metrics
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Algorithm 4 SPEA2 Pseudocode
1: Initialise the population size (N ), external archive sizeNa

and stop criteria;
2: Generate the initial population of chromosomes ran-

domly using a uniform distribution;
3: Produce an empty external archive;
4: Evaluate the fitness of each individual in the population;
5: while a stop criterion is not reached do
6: Find the non-dominated items in the external archive;
7: if Number of non-dominated elements > Na then
8: Calculate the crowding distance of the non-

dominated set;
9: Keep the best Na non-dominated elements in the

external archive;
10: else
11: Fill the archive until it becomes full using best-

dominated vectors;
12: end if
13: Select the parent chromosomes in the population using

a binary tournament;
14: Execute the crossover operator to parents, forming the

new population;
15: Perform the mutation to each chromosome in the gen-

erated individuals;
16: Evaluate all the new individuals;
17: Combine the current population with the new chromo-

somes;
18: end while
19: return The set of non-dominated vectors in the external

archive

such as Delay, packet loss ratio (PLR), network route load
(NRL), and energy consumption (EC). These metrics were
then fed back into the multi-objective algorithm, measuring
the quality (fitness) of the generated solution. This iterative
process continues until the stop criteria of the metaheuristic
are met.

A real-value strategy was used for all optimizers to encode
the solutions. The mutation and crossover operators used
actual codification for the evolutionary-based algorithms.
Each population element has a candidate solution represented
by a four-dimensional array. In this array, each dimension
corresponds to one of the parameters to be optimised (e.g.,
SW1, SW2, LW1, and LW2). We fixed the search space
for all dimensions as [-1, 1] based on previous works and
experiments [19], [21].

No additional modification was required to the optimizers
to ensure that different optimisation techniques could easily
replace them in future experiments. All the problem-specific
dependencies were modeled in the objective function class.
In the jMetal framework [59], this class poses all the problem
attributes such as the number of dimensions, search space
range, and fitness function). When the optimizers generate
a solution and need to evaluate its quality, they will call
the objective function class, passing the solution array as an

argument. Inside the function, a new NS2 simulation setup
with be created using the values for SW1, SW2, LW1, and
LW2 generated by the optimiser.
Next, the NS2 simulation will be executed using the speci-

fications described in Section VI and the values generated by
the optimiser . Once the simulation finishes, the output files
are processed using a script that evaluates the QoS metrics’
value (e.g., routing delay, energy consumption, packet loss,
ratio, and route load). These values are sent back to the
optimiser as the solution’s fitness (i.e., quality) is produced.
This process is repeated for all candidate solutions gener-
ated/updated during optimisation until the stop criteria are
met.
Before performing the experiments with the multi-

objective algorithms, we first needed to modify the AODV
to account for the connectivity information in the new route
repair decisionmechanism. Instead of adding the connectivity
as part of the routing process, previous works retrieved it from
the simulation platform. This study is essential since different
strategies to include connectivity into the AODV can worsen
its performance, as illustrated in Table 1.
To include the connectivity information we considered the

following possible approaches:
• Create new packets for request/reply node connectiv-

ity (AODV-C1): We create two packets for requesting
and replying with the connectivity information. When
a route breakage is detected, the predecessor node will
unicast packets to its neighbours requesting their con-
nectivity information. It will wait for the replies and then
proceed with the recovery decision. The advantage of
this approach is to avoid flooding the network with pack-
ets since they are only used when needed. Nevertheless,
its main drawback might be the increase in the repair
time, as the connectivity information will be requested
during the routing repair process. Additionally, we have
the routing overhead of introducing two new types of
packets circulating in the network and impacting the
NRL metric.

• Include the connectivity information in the data
packets (AODV-C2): The idea here is to avoid increas-
ing the number of routing packets in the network by
including the connectivity information in the structure
of the regular data packets. This strategy’s benefit is
continuously updating the connectivity information of
active nodes in the network. Besides, because the pre-
decessor node will have all the necessary information
to start the repair process, we expect the repair time to
be the same as the AODV in the worst-case scenario.
Nonetheless, the downside is that the nodes will need to
store their neighbours’ information, which may increase
the memory usage in the nodes.

• Modify the HELLO and RREQ packets to include
the connectivity information (AODV-C3): This last
approach incorporates using existing packages to in-
clude connectivity information. However, since the flow
of HELLO and route request packets occur less often
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FIGURE 6. Representation of the proposed solution.

than the data packets, we expect to reduce the impact
of this modification on the AODV performance. We
modified the structure of these packets to add a field to
send the nodes’ connectivity.When a node receives these
packets, it retrieves and stores/updates its neighbour
connectivity information. The principal disadvantage is
that the information will be updated less regularly than
in the AODV-C2 approach.

We conducted experiments to assess the performance of
the AODV-C1, AODV-C2, and AODV-C3, and the results are
presented in Table 1. As we can see in Table 1, the AODV-C3
approach was the one that achieved the best results among
the tested option. The better performance of the AODV-C3
approach might be because it does not introduce any extra
route load with new routing packets as the AODV-C1. Also,
because the Hello/RREQ packets circulate less often than the
data packets, we believe that the impact of the AODV-C3 is
also minimised compared to the AODV-C2. Hence, it was
selected as the version used in the experiments with the multi-
objective algorithms.

TABLE 1. Performance comparison considering the mean values of the
mono-objective algorithms and the standard AODV.

Algorithm Simulation
Time (sec) Delay NRL PLR

AODV ≈ 130.000 2.968 6.741 0.496
AODV-C1 ≈ 130.000 2.132 31.590 0.842
AODV-C2 ≈ 150.000 3.898 15.200 0.695
AODV-C3 ≈ 130.000 1.425 6.31 0.417

It is worth mentioning that, in another scenario where no
modifications were introduced to the route recovery process,
all of the proposed changes would harm the performance
of the AODV. For example, introducing new packets will
increase the routing overhead, and including further infor-
mation on existing packets results in worse delay time and
NRL. However, the results presented in Table 1 compare the
standard AODV to a PSO-optimised AODV, which already
modifies the route recovery strategy. For this reason, we can

see that some of the proposed approaches present superior
results to the standard AODV.

VI. EXPERIMENTS AND RESULTS
In this section, we detail the experiments and results. Sub-
section VI-A explains the decisions regarding the character-
istics of the simulated environment, its limitations, and the
simulation configurations. Then, Subsection VI-B describes
the metrics utilised to evaluate the algorithms. Finally, in
Subsection VI-C, we analyse the results.

A. SIMULATION SETUP
The computational simulations were run in an Intel Xeon
3.1 GHz computer with 16 GB RAM and 1TB, running a
Ubuntu 15.10 64-bit operating system. The algorithms were
implemented in Java programming language using the jMetal
Framework [59].We noticed that it was necessary to develop a
script in Bash to communicate the Java code with the network
simulation platform.
The simulation platform was network simulator 2 (NS2)

[60] version 2.35. The NS2 is a robust and well-known tool
that implements several routing protocols, including AODV.
Using this platform, we implemented themodifications on the
AODV to include the new parameters for route recovery deci-
sions (SW1, SW2, LW1, and LW2), modifying the structure
of the packets and the route repair mechanism.
Also, using the NS2, we modeled a network with 50 nodes

with a maximum speed of 20 m/s. The environment dimen-
sions were set to 1500 by 300 meters, and the duration of
each simulation was 900 seconds with a pause time of 30
seconds (Sleep mode). The medium access (MAC) and the
physical (PHY) layers follow the IEEE 802.11 at a bit rate of
2 Mbits/s, a transmission range of 250m, and the propagation
model used was a two-ray ground.
The user datagram protocol (UDP) was used with a CDR

traffic pattern for the traffic model. There are 30 traffic
sources transmitting packets of 512 bytes at a rate of 4 packets
per second. Both data and routing packets are buffered in a
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queue that holds at most 50 packages until the MAC layer
can transmit them.

The energy model defines the initial energy of each node
as 1000 Joules. Besides, the energy consumed during sleep
mode is 1mW per second, the energy consumed to transmit
packets was defined as 1.65W, and the energy used to receive
packages equals 1.1W.

Table 2 shows the values for the parameters used during
the experiments regarding the metaheuristics configuration.
All the algorithms were executed 30 times, the stop criteria
adopted was 20.000 fitness evaluations, and the search space
for the four parameters (SW1, SW2, LW1, and LW2) was [-1,
1].

TABLE 2. Configuration of the NSGA-II, SPEA2 and SMPSO. Where NV =
Number of Variables, pm = Mutation probability and pc = Crossover
Probability.

Parameter NSGA-II SMPSO SPEA2
Population Size 100 100 100
Archive Size – 100 100

Mutation Polynomial
pm = 1.0/NV

Polynomial
pm = 1.0/NV

Polynomial
pm = 1.0/NV

Selection Binary Tournaments – Binary Tournaments

Crossover Simulated Binary
pc = 0.9

–
Simulated Binary

pc = 0.9

The values adopted in the simulations for the network
simulator and the algorithms were based on previous works
by [21], [55] and validated experiments. With the earlier
experiments, we verified that those values were sufficient
to achieve satisfactory results. We highlight that increasing
or decreasing those values does not necessarily imply better
results. The multi-objective algorithms’ fitness function (fit)
is defined in Equation 13.

Minimise fit(x) = (NRL(x),EC(x)) (13)

where NRL and EC are, respectively, the normalised route
load, and the energy consumption and they are calculated
using Equation 16 and Equation 17 respectively.

The mono-objective algorithms (ABC and PSO) were sim-
ulated using the same architecture as the multi-objective
(Figure 6). The only difference is that the mono-objective
algorithms used only the NRL as their fitness function in a
minimisation process.

Besides the AODV, we selected the following protocols
to compare the performance of the proposed approach with
other proactive and reactive routing protocols in the literature:
ad hoc on-demand multiple path distance vector (AOMDV)
[61], destination sequenced distance vector (DSDV) [62],
dynamic source routing (DSR) [63], and optimised link state
routing protocol (OLSR) [64]. The AOMDV was selected
as a more recent version of the AODV featuring a multiple
path discovery capability, allowing it to use the backup route
instead of the route recovery when a route is no longer valid.
The DSR was selected for being an alternative reactive proto-
col to the AODV. It has a different route recovery strategy that
only allows local repairs. On the other hand, the DSDV and
OLSR were selected to represent distinct proactive routing

protocols for MANETs. These four routing protocols were
also simulated on the NS2 platform in the same scenario,
energy model, and node network characteristics as the AODV
but without optimisation.

B. PERFORMANCE METRICS
The performance of the routing protocols was assessed using
the following metrics:
1) Normalised route delay (RD or Delay): is defined as

the average time it takes for data packets to arrive at
the destination node divided by the number of active
connections in the network. The Delay is calculated
using Equation 14.

Delay =

DP∑
i=1

ArriveTime− SendTime

N∑
i=1

NumberOfConnections
, (14)

where ArriveTime, and SendTime are, respectively, the
time when the packet arrived in the destination node,
and the time when the packed left the source node,
NumberOfConnections is the number of active connec-
tions in the network, N is the number of nodes, and DP
is the number of data packets received.

2) Packet loss ratio (PLR): measures the fraction of the
data packets that were not delivered to the destination as
presented and can be calculated by applying Equation
15.

PLR =
ReceivedDataPackets

DataPackets
, (15)

where ReceivedDataPackets and DataPackets are the
numbers of data packets received and sent in the net-
work.

3) Normalised route load (NRL): is the number of rout-
ing packets (RoutingPackets) sent divided by the num-
ber of data packets (DataPackets) sent during the sim-
ulation (Equation 16):

NRL =
RoutingPackets
DataPackets

. (16)

4) Energy consumption (EC): is the average energy
spent by the node from the beginning to the end of the
simulation (Equation 17).

EC =

N∑
i=1

(InitalEnergyi − FinalEnergyi)

N
, (17)

where N is the number of nodes in the network,
InitalEnergyi is the initial energy on the node i, and
FinalEnergyi is the energy left on the node i at the end
of the simulation.

Our goal is to minimise all the values for these four metrics.
Furthermore, when dealing with multi-objective algorithms,
it is necessary to work with conflicting objectives. As shown
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in Figure 7, the correlation analysis of the selected metrics
reveals that NRL, RD, and PLR are positively correlated,
and there is no conflicting relationship between them. On
the other hand, the correlation between the energy consumed
and the other metrics is not high, and, in some cases, we can
see a slight negative correlation. For these reasons, Energy
Consumption was selected as one of the objectives to be
optimised . The Route Delay, NRL, and PLR metrics could
be used for the second objective instead of the NRL without
changing the final results. Since the goal is to minimise the
selected metrics to achieve better results, the algorithms were
implemented considering the minimisation of the objectives.

C. RESULTS
We found that NSGA-II, SMPSO, and SPEA2 presented a
similar Pareto front while minimising energy consumption
and normalised route load. Figure 8 A depicts the Pareto front
achieved by the three metaheuristics. It is possible to observe
that all algorithms found few solutions: four solutions found
by NSGA-II and three obtained by SMPSO and SPEA2.
Although the NSGA-II was able to get some superior answers
regarding the SMPSO and SPEA2, the Pareto front of these
two algorithms dominates the one found by NSGA-II.

Concerning the absolute variation of the metrics values, the
PLR values variation is higher than the EC variation. This
variation may occur because reducing the energy consump-
tion is more complex than reducing the packet loss ratio.
Given that the NRLmeasures the balance between the packets
and data packets sent during the simulation and that the
number of transmitted data packets is fixed, only the amount
of routing packets can be reduced to minimise the NLR.

The algorithms must work on the routing repair process
to reduce the routing packet traffic since it is the only one
that interferes with routing packets and can be modified in the
simulations. As shown in Figure 8 B, all metaheuristics tend
to give higher weight to SW1 and SW2, which are responsible
for the source route repair. As a result, the source repair tends
to be executedmore often than the local repair. This behaviour
confirms the results of Pereira et al. [65], in which the source
repair achieved better results than local repair in a network
with a similar configuration to the one used in this work.

Table 3 shows that the NSGA-II, SMPSO, and SPEA2
found the same set of best values for the parameters. Further-
more, the achieved values also gave more weight to the terms
responsible for the source repair, validating that source repair
presents better performance than local repair for the network
scenario described in this paper.

TABLE 3. Optimum values for A, B, C and D found by each algorithm,
considering the best value as the one which presents the best balance
between the normalised route load and the energy consumption.

Algorithm SW1 SW2 LW1 LW2
NSGA-II 0.3782 -0.5895 -0.1362 -0.1362
SMPSO 0.3782 -0.5895 -0.1362 -0.1362
SPEA2 0.3782 -0.5895 -0.1362 -0.1362

In the NRL minimisation, the algorithm only reduces traf-
fic or routing packets. However, reducing the traffic of data
and routing packets is necessary to minimise the EC. This
behaviour occurs because the network traffic is the primary
energy consumption responsibility . Hence, the number of
packages sent during the simulation does not change. There-
fore, only the traffic and the re-transmission/reception of
routing packets can be modified to minimise the EC.
A feasible strategy to minimise the EC is to reduce the

network traffic by reducing the average network path length.
In the context of the problem tackled in this work, since we
are only dealing with route recovery, this reduction can be
achieved by prioritising the reconstruction of shorter routes.
The idea behind the strategy is that by reducing the length
of the reconstructed paths, the overall number of packets re-
ceived and re-transmitted will decrease. A direct consequence
of this approach is reducing the Route Delay observed in
part of the results. For this reason, the algorithms adopted a
strategy that uses the average path length minimisation strat-
egy in association with another method to minimise energy
consumption.
However, the strategy to force the packet loss is also pe-

nalised once it harms the NRL, which is another objective
function to be minimised. Loose/drop packets may indicate
route break or failure in the route repair process. In both cases,
the NRL will increase. Hence, a new repair operation will be
needed, and these operations require the use of route packets.
Consequently, the best solution is the one that has the best

balance between energy consumption and the NRL. We as-
sume that the selected solution canminimise the NRLwithout
compromising the node’s energy in the network. As a result,
the three algorithms found the best solution, and the values
are NRL = 1.8612, PLR = 17.7074, RD = 0.6591, and
EC = 1.9678. Table 4 presents the mean and the Standard
Deviation of the results achieved by the Algorithms.
As seen in Table 4, the results obtained by the algorithms in

association with AODV were better than the standard AODV
in all analysed metrics. Furthermore, applying the Wilcoxon
test with a significance level of 5% confirmed that the results
of the three algorithms are indeed different from the AODV.
Moreover, compared to reactive and proactive routing pro-
tocols concerning energy consumption and packet loss ratio,
the proposed methodology overcame other routing protocols
used in this study. However, our proposal overcame the DSR
protocol regarding the NRL and Delay.
The OLSR produced superior results than the other pro-

tocols regarding NRL; this might be because this protocol
has mechanisms to prevent redundant packets in the network.
However, the drawback of this behaviour is to increase the
risk of losing information, and as can be seen in Table 4, they
had the second-worst performance regarding the PLR metric.
Concerning Delay, the DSDV protocol had the best result.

This result can be because the proactive routing strategy
helps maintain the updated routing tables, reducing the time
required to send the packets. However, the proactive approach
in this protocol led to an increase in the NRL and the EC.

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3322691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Santana et al.: Multi-Objective Optimisation of the AODV’s Routing Recovery

FIGURE 7. Spearman correlation for the metrics: Normalised Route Load, Routing Delay, Paxcket Loss Ratio and Energy Consumption. Note that only
energy consumption has a non-positive correlation with the other metrics.

FIGURE 8. Characteristics of the solutions found by the multi-objective algorithms. Panel A shows Pareto Front achieved by the NSGA-II, SMPSO and
SPEA2, while panel B displays the number of times (%) when the values found by the algorithms for the source repair (SW1 and SW2) weight is
higher than the local repair (LW1 and LW2).

Nonetheless, there is no statistical difference between
them. Therefore, the similarity between the results can indi-
cate that the algorithms may get trapped in local minimal,
or the three multi-objective algorithms could find the best
solution regarding NRL and EC.

When comparing the results of the multi-objective pro-
posals with mono-objective algorithms (PSO and ABC) as
reported in previous studies [21], regarding better results of
NRL, the MOAs could still find a slightly better solution
(Table 4). However, there is no statistical distinction between
them when we apply the Wilcoxon test with 95% confidence
interval (population of 30 elements of each algorithm).

In Table 4, it is possible to observe that the Energy Con-
sumption of the solutions found by the multi-objective algo-

rithms was slightly higher than the mono-objective values. It
may be related to the fact that when the Packet Loss is re-
duced, the number of packets re-transmitted and received in-
creases. Since the packet traffic is the primary component for
the energy consumption in the network, it causes the elevation
of EC. It is worth mentioning that the energy consumption
increase was mainly due to the traffic of data packets. Hence,
the number of routing packets (NRL) decreased.
Lastly, concerning the convergence of the algorithms, we

observed in previous experiments that the definition of the
stop criteria as 20.000 fitness evaluations was enough to allow
all t three multi-objective algorithms to converge. The conver-
gence happened even before the 20.000 fitness evaluations
mark in most of the executions. The fast convergence can
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TABLE 4. Mean Values and the Standard Deviation of the results achieved
by the standard AODV, other routing protocols, and the association of
AODV with multi and mono objective bio-inspired algorithms.

Algorithm NRL Delay PLR EC

AODV 6.7417
(0.0000)

2.9684
(0.0000)

0.4962
(0.0000)

1.9801
(0.0000)

AOMDV 1.5700
(0.0000)

0.8711
(0.0000)

0.3309
(0.0000)

2.0000
(0.0000)

DSDV 3.2134
(0.0000)

0.0260
(0.0000)

0.3848
(0.0000)

2.0000
(0.0000)

DSR 33.0000
(0.0000)

1.8187
(0.0000)

0.3333
(0.0000)

2.0000
(0.0000)

OLSR 0.9563
(0.0000)

0.7338
(0.0000)

0.4279
(0.0000)

2.0000
(0.0000)

AODV + NSGA-II 3.5185
(1.9696)

1.4720
(0.9911)

0.3001
(0.0143)

1.9653
(0.0131)

AODV + SMPSO 3.1211
(1.8281)

1.2889
(0.9915)

0.2667
(0.0128)

1.9630
(0.0157)

AODV + SPEA2 2.2500
(0.6777)

0.8633
(0.3999)

0.2058
(0.0493)

1.9660
(0.0178)

AODV + ABC 2.0227
(0.4920)

0.7044
(0.3235)

0.1950
(0.0403)

1.9950
(0.0043)

AODV + PSO 2.1868
(0.2812)

0.6083
(0.2100)

0.1881
(0.0319)

1.9710
(0.0140)

suggest that this problem is multimodal, and the algorithms
get trapped in sub-optimum solutions. This hypothesis is
further supported by the discrepancies between the solutions
found by the NSGA-II and the other two algorithms. Because
the NSGA-II were equally good or dominated by the other
optimizers’ answers, it could not improve them even after
several iterations.

VII. DISCUSSION
The proposed methodology offers two fundamental benefits
compared to the conventional AODV and analogous tech-
niques documented in the literature. Firstly, it demonstrates
enhanced flexibility while simultaneously maintaining com-
patibility with AODV-compatible devices. Diverse routing
behaviours might be required depending on the specific at-
tributes of the problem at hand. For example, different routing
approaches might be needed depending on the network size,
battery capacity, node velocity, and environmental dimen-
sions. Given that our solution’s optimisation phase considers
these intricacies (i.e., the simulated routing scenario should
capture these characteristics), it permits a more bespoke rout-
ing approach than conventional rigid methods.

The second benefit of our proposal pertains to implementa-
tion procedures and computational costs. The multi-objective
optimisations can be conducted offline in a dedicated com-
puter, removing the requirement of more robust hardware on
the nodes. The only requirement is that the simulated envi-
ronment mirrors real-world conditions. After achieving the
optimal parameter values with the simulations, a customised
version of the AODV featuring these determined values can
be deployed as the routing protocol within MANETs’ nodes.
This attribute extends the compatibility of our solution to vir-
tually any device capable of employing the standard AODV.
Our solution retains retro-compatibility and does not impose

substantial supplementary computational burdens, mitigating
the potential rise in energy consumption among the nodes.
Our proposed solution also presents some trade-offs con-

nected mainly to the modelling and simulation process and
the nature of multi-objective optimisation. As mentioned, our
approach optimises the route recovery of the AODV to suit
the characteristics of the environment best. In this case, the
simulated scenario must capture the main features of the
actual conditions to ensure an optimal performance. Hence,
better modelling can positively affect the implementation of
the proposed solution.
Another drawback is related to the simulation process,

which can be done offline on a computer with more robust
hardware but requires hours to reach the optimal value. Be-
cause the simulation setup involves different programs (e.g.,
Python scripts, Java implementation of the multi-objective al-
gorithms, and NS2 simulator), the interconnectivity between
these components and the information exchange can be time-
consuming.
Multi-objective optimisation is a more complex process

than the mono-objective one, but the improvements achieved
in one of the metrics can be slightly inferior compared to the
mono-objective. For example, we can see in Table 4 that the
mono-objective algorithms overall were able to find better
NRL results than the multi-objective one. However, looking
at the overall results, the multi-objective solutions reached
better results than the mono-objective ones – a better trade-off
between the reduction in the NRL and energy consumption
simultaneously.

VIII. CONCLUSIONS
Mobile ad hoc networks are a field with several real-world ap-
plications varying from intelligent devices to swarm robotics.
Regardless of the application, the section of the appropriate
routing protocol is a critical step to achieving adequate perfor-
mance. This study introduces a multi-objective optimisation
approach for AODV, a widely employed routing protocol in
MANETs. Through the optimisation of parameters governing
the weight factors associated with source repair (SW1 and
SW2) and local repair (LW1 and LW2) within the route re-
pair decision process, we successfully enhance the protocol’s
overall performance across all designated metrics.
*****PAREI AQUI*****
*****PAREI AQUI*****
*****PAREI AQUI*****
Another contribution of our work concerns the assess-

ment of QoS metrics suitable for multi-objective optimisa-
tion. We show that there is a correlation between some of
these metrics. Hence, the optimisation of one would result
in the indirect optimisation of the others. From the metrics
selected, only the energy consumption was not strongly cor-
related with the others. Moreover, comparing the proposed
solution with other routing protocols and previous mono-
objective approaches under the same environmental setup
is also a novelty. This comparison allowed us to see these
methods’ performance differences, particularly between the
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multi-objective and mono-objective methods. Lastly, the set
of best weights found by the optimisers supports the results of
previous works, indicating that in most scenarios, the source
repair mechanism of the AODV is more effective than the
local repairs.

As a future direction of this research, we intend to compare
the proposed approach with other reactive routing protocols,
such as DSR and TORA, or even proactive and hybrid routing
protocols for future work. Furthermore, we can further inves-
tigate how the velocity of the nodes, number of nodes, traffic
intensity, and size of the environment impact the performance
of the algorithms.
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