1. Streetscore: Predicting the Perceived Safety of One Million Streetscapes

Nikhil Naik, Jade Philipoom, Ramesh Raskar, César Hidalgo (2014)

Abstract

social science literature has shown a strong connection between the visual appearance of a city’s neighborhoods and the behavior and health of its citizens. Yet, this research is limited by the lack of methods that can be used to quantify the appearance of streetscapes across cities or at high enough spatial resolutions. In this paper, we describe ‘Streetscore’, a scene understanding algorithm that predicts the perceived safety of a streetscape, using training data from an online survey with contributions from more than 7000 participants. We first study the predictive power of commonly used image features using support vector regression, finding that Geometric Texton and Color Histograms along with GIST are the best performers when it comes to predict the perceived safety of a streetscape. Using Streetscore, we create high resolution maps of perceived safety for 21 cities in the Northeast and Midwest of the United States at a resolution of 200 images/square mile, scoring ∼1 million images from Google Streetview. These datasets should be useful for urban planners, economists and social scientists looking to explain the social and economic consequences of urban perception.

> Download paper

> Visit StreetScore

2. The Collaborative Image of The City: Mapping the Inequality of Urban Perception

Philip Salesses, Katja Schechtner, César A. Hidalgo. PLOS ONE (2013)

> Download paper

Abstract

A traveler visiting Rio, Manila or Caracas, does not need a report to learn that these cities are unequal; she can see it directly from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to the income of their residents, but also, with respect to the cleanliness of their neighborhoods, the beauty of their architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to understand the effect of a city’s built environment on social and economic outcomes has been limited by the lack of quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create quantitative measure of a city’s contrasts. Using thousands of geo-tagged images, we measure the perception of safety, class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection between them and homicides, finding a significant correlation between the perceptions of safety and class and the number of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that online images can be used to create reproducible quantitative measures of urban perception and characterize the inequality of different cities.

Short video abstract



Long video abstract